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1 Warm up: the entropy method

Shannon’s entropy of a discrete random variable x is defined as

H(x) = −
∑
ξ

P(x = ξ) log(P(x = ξ)).

The entropy of a Bernoulli random variable with parameter p is denoted
H(p). The mutual information of two random variables is defined as I(x; y) =
H(x) +H(y)−H(x, y).

Exercise 1.
(
n
k

)
≤ enH( k

n).

Exercise 2. If k ≤ n
2
, then

∑k
i=0

(
n
i

)
≤ enH( k

n).

More generally, let A be a finite alphabet. Denote the cardinality of A
by |A|, the set of all probability measures over A by ∆(A), and the set of all
n-periodic A-sequences by A(n) = {x ∈ AZ : s = t mod n → xs = xt}, and
the empirical frequency of x ∈ A(n) by emp(x) ∈ ∆(A).

Exercise 3. For every X ⊂ A(n), |X| ≤ enmax{H(p):p∈conv{emp(x):x∈X}}.

Define A(n,k) ⊂ A(n) as the set of all n-periodic A-sequences that do not
contain any k-subsequence more than once in the same period. Formally,

A(n,k) = {x ∈ AZ : (xs+1, . . . , xs+k) = (xt+1, . . . , xt+k)↔ s = t mod n}.

Exercise 4. For every n, k, and x ∈ A(n,k), n ≤ ekH(emp(x)).

The next problem seems too difficult to be called an “exercise” (at least
I’m not aware of a simple argument that proves it).

Proposition 5. Let x1, x2, . . . be i.i.d. A-valued random variables. Let Tk =
min{n : (x1, . . . , xn)ω 6∈ A(n,k)}. Then,

sup{r > 0 : lim
k→∞

P(Tk > rk)
1

rk = 1} = eH(x1).
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2 Game definition

2.1 One-stage game

In this exposition a one-stage game G = (I, A, g) consists of the following
components:

• a finite set of players I = {1, . . . , n},

• finite sets of actions, A1, . . . , An, A = A1 × · · · × An,

• a payoff function (of Player 1) g : A→ R.

The payoff function extends to g : ∆(A) → R linearly. The min max value
of (Player 1 in) G is defined as

min maxG = min
pj∈∆(Aj)
j=2,...n

max
p1∈∆(A1)

g(p1 ⊗ · · · ⊗ pn).

2.2 Repeated game

A pure strategy for Player i in the repeated version of G is a function
σi :

⋃∞
t=0A

t → Ai. A profile of strategies σ1, . . . , σn induces an infinite play
a1, a2 . . . ∈ A defined recursively by

at+1 = (σ1(a1, . . . , at), . . . , σn(a1, . . . , at)).

The (limiting average) payoff of the repeated version of G is defined as

g∗(σ1, . . . , σn) = lim
T→∞

1

T

T∑
t=1

g(at),

wherever the limit exists (we will only consider situations where the limit
exists).

2.3 Repeated game with bounded recall

A k-recall strategy is a strategy that relies only on the last k stages of history.
Formally, σi is a k-recall strategy if

σi(a1, . . . , at) = σi(at−k+1, . . . , at),

for every t > k and a1, . . . , at ∈ A. The set of k-recall strategies for player i
is denoted Σi(k). The repeated game with recall capacities k1, . . . , kn ∈ N is
the game

G[k1, . . . , kn] = (I,Σ1(k1)× · · · × Σn(kn), g∗).
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The holy grail is a full characterization of min maxG[k1, . . . , kn]. The
case of two players is fairly well understood (asymptotically, for large ki).
However, our understanding of games with more than two players is limited.

3 Two-player games

Theorem 6 (P. (2012)). For every C > 0, C 6= log(|A1|),

lim
k→∞

min maxG[k, eCk] = max
p1∈∆(A1)
H(p1)≥C or
H(p1)=0

min
p2∈∆(A2)

g(p1 ⊗ p2).

An inequality in the direction “≥” stems from Proposion 5 and the fol-
lowing potent lemma (whose proof is a nice exercise).

Lemma 7 (Neyman and Okada (2009)). Let x1, . . . , xn, y0, . . . , yn be (dis-
crete) random variables such that yk is measurable w.r.t. σ〈xi, yi : i < k〉,
for all k = 1, . . . , n. Let t be a random variable uniformly distributed in
{1, . . . , n} independently of the other random variables. Then,

I(xt; yt) ≤ H(xt)−
1

n
H(x1, . . . , xn) +

1

n
I(x1, . . . , xn; y0).

[recall: I(x; y) measures the interdependence between x and y.]

Hint. To prove Theorem 6, fix some time T and let y0 be the continuation
strategy of Player 2 at time T , and (xi, yi) the induced play at time T+i. One
needs to set n large enough so that 1

n
H(y0) vanishes, but not too large so that

Player one can implement a (stationary) play whose n-stage average entropy
is close to its one-stage entropy (i.e., H(xt)− 1

n
H(x1, . . . , xn) vanishes).

The critical point C = log(|A1|)

The expression on the RHS in Theorem 6 is a non-increasing function of C
which is continuous at all but perhaps one point, C = log(|A1|). Let v̄, v be
the left and right limits at C = log(|A1|) respectively. P. (2012) explains how
to extend the proof of Theorem 6 to showing that
lim
k→∞

min maxG[k, (12k)−1|A1|k] = v̄. I believe that one can also extend the

proof to showing that lim
k→∞

min maxG[k, kD|A1|k] = v, for some (sufficiently

large) constant D. The following is an open research problem.

Problem 8. lim
k→∞

min maxG[k, |A1|k] =? Does the limit necessarily exits?
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Conjecture 9.

lim
C→0+

lim inf
k→∞

min maxG[k, C|A1|k] = min maxG,

lim
C→∞

lim sup
k→∞

min maxG[k, C|A1|k] = max
x∈A1

min
y∈A2

g(x, y).

4 Three players (or more)

Estimating min maxG[k1, k2, k3] seems to be difficult. The difficulty stems
from the fact that the set over which we minimize is not convex. We don’t
even know how to deal with natural special cases such as k1 = k2 = k3. It
seems as though the interesting region is where the ki-s are proportional to
each other. From Theorem 6 it isn’t hard to show that for every C > 0,

min
p2,3∈∆(A2×A3)

max
p1∈∆(A1)

g(p1⊗p2,3)−o(1) ≤ min maxG[k, Ck, Ck] ≤ min maxG+o(1).

It is not too hard to show that if the recall capacity of Players 2 and 3 is
much larger than that of Player 1, then Players 2 and 3 can correlate against
Player 1 . Formally, for any game G,

lim
C→∞

lim sup
k→∞

min maxG[k, Ck, Ck] = min
p2,3∈∆(A2×A3)

max
p1∈∆(A1)

g(p1 ⊗ p2,3).

Surprisingly, Players 2 and 3 can sometimes correlate even if their recall
capacity is smaller than that of Player 1.

Theorem 10. (P. 2013) For every ε > 0 and every game G, by cloning any
of the actions of Player 2 sufficiently many times we obtain a game G̃ such
that

min max G̃[k, εk, εk] ≤ min
p2,3∈∆(A2×A3)

max
p1∈∆(A1)

g(p1 ⊗ p2,3) + ε.

For a fixed game, we have a converse result.

Theorem 11 (Bavly and P. 2018+). For every game G,

lim
ε→0+

lim inf
k→∞

min maxG[k, εk, εk] = min maxG.

We don’t have good estimates for min maxG[k, Ck, Ck], given a game G
and a constant C > 0.

Conjecture 12. lim
k→∞

min maxG[k, Ck, Ck] exists, for every one-stage game

G and every C > 0.
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