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Abstract

We study repeated games in which each player i is restricted to

(mixtures of) strategies that can recall up to ki stages of history.

Characterizing the set of equilibrium payoffs boils down to identifying

the individually rational level (“punishment level”) of each player.

In contrast to the classic folk theorem, in which players are unre-

stricted, punishing a bounded player may involve correlation between

the punishers’ actions. We show that the extent of such correlation

is at most proportional to the ratio between the recall capacity of the

punishers and the punishee. Our result extends to a few variations of

the model, as well as to finite automata.
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1 Introduction

It has long been asserted that in many economic contexts, not all courses of

action are feasible (e.g., Simon 1955, 1972). Many times it is reasonable to

expect simple strategies to be employed, or at least strategies that are not

immensely complex. The issue is clearly manifest in repeated games, as even

a finite repetition gives rise to strategies that one may deem unrealistically

complex.

In a survey of repeated games with bounded complexity, Kalai (1990)

asked, “What are the possible outcomes of strategic games if players are re-

stricted to (or choose to) use ‘simple’ strategies?” This question has been

considered in many works through the years. To name a few notable results,

we mention Abreu and Rubinstein (1988), Aumann and Sorin (1989), Ney-

man (1997), Gossner and Hernández (2003), Renault et al. (2007), Neyman

and Okada (2009), Lehrer and Solan (2009), Mailath and Olszewski (2011),

and Barlo et al. (2016).

In this paper we bound, for each player i, the amount of correlation

that the other players can effectively achieve “against” i in a repeated game

with bounded complexity. The bound is formulated in terms of the (average

per-stage) amount of correlation between the stage actions of the players

other than i. This upper bound on correlation implies a lower bound for the

equilibrium payoff of each player i.

The two most common models of bounded complexity in repeated games

are finite automata and bounded recall.1 Both models involve setting bounds

1These models were introduced by Aumann (1981). Other pioneering works in this

area include Neyman (1985), Rubinstein (1986), and Ben-Porath (1993) on automata, and
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on the memory of the players.2

For clarity’s sake, our presentation here focuses on the simple model of

bounded recall, in which each player i has a recall capacity ki, where i’s

strategy can rely only on the previous ki stages. However, our main result

also applies to finite automata (Theorem 5.1), as well as to some variants of

the bounded recall model (see Section 5).

No further assumptions are made besides complexity bounds; e.g., there

are no external communication devices, and monitoring is perfect.

In repeated games with bounded complexity, the characterization of the

equilibrium payoffs boils down to identifying the individually rational (min-

max) levels of the players3 (Lehrer 1988, p. 137), which need not coincide

with the individually rational levels of the one-stage game. That is, in a suf-

ficiently long game, any payoff profile that is feasible and above each player’s

minmax is close to an approximate equilibrium payoff (or simply to an equi-

librium payoff, in games with a full dimensional feasible set). Thus, we can

henceforth concentrate on the minmax.

The case of two players is well understood (Lehrer 1988, Ben-Porath 1993,

Peretz 2012). Little is known about the minmax when there are more than

two players. The difficulty lies in the possibility of correlation in a group of

players. Even though the players employ uncorrelated mixed strategies at

the beginning of the game, their actions can become correlated in the course

Lehrer (1988) on bounded recall.
2These bounds are not necessarily small, and hence bounded complexity does not

imply that strategies are necessarily “simple” in everyday terms.
3Also known as “punishment levels.”
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of the game due to imperfect recall.4,5

To illustrate the role of correlation in our results, let us consider a one-

stage three-person Matching Pennies game, in which Player 3’s payoffs are

L R

T -1 0

B 0 0

W

L R

T 0 0

B 0 -1

E

. (1.1)

Player 3’s minmax level is −1
4
, which is obtained when 1 and 2 play

p =

1
4

1
4

1
4

1
4

.

Now consider a repetition of the one-stage game (finitely or infinitely many

times). Although the strategy space of the repeated game may be quite

complicated, 3’s minmax level remains −1
4
. The reason is that conditioned

on any finite history, the actions of 1 and 2 right after that history are

independent; therefore, 3, who observes the history, need only respond to

product distributions in any period.6

But suppose that the players have bounded recall and, therefore, they do

not observe the entire history. For example, let us say that both 1 and 2

4The subtlety of games with imperfect recall was demonstrated by Piccione and Ru-

binstein (1997) even in the case of a single player.
5The possibility of correlation between players was demonstrated by Peretz (2013) who

showed that for every C > 0, there is a game in which two players with recall capacities

k can correlate their actions against a third player whose recall capacity is Ck, for k large

enough.
6In other words, although the actions of 1 and 2 may be correlated, they are indepen-

dent in the eyes of 3 (given his information about the entire history).
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have recall capacity k and 3 has recall capacity m. In Peretz (2013) it was

shown that (up to an approximation) 1 and 2 can implement a 2k-periodic

sequence of actions whose period consists of 2k independent repetitions of a

correlated action profile such as

c =

1
2

0

0 1
2

.

Therefore, perhaps surprisingly, even for m larger than k, as long as m < 2k

an agent who observes only the last m actions of 1 and 2 faces the correlated

action c in every period; therefore 3’s best response conditioned on the last

m actions of 1 and 2 ensures him only −1
2

(which is 3’s one-stage correlated

minmax level).

Yet things turn out to be more complicated. Player 3 observes not just

the actions of 1 and 2, but her own actions as well. By playing a certain

pattern of actions, 3 can encode information about the past actions of 1 and

2, and when these actions are repeated, 3 can predict the next move of 1 and

2.

Determining the value that 3 can defend in such a way is a delicate matter.

One needs to quantify the amount of information that 3 can encode while she

maintains a given payoff level. Furthermore, even if we knew this value, it

would still not suffice for computing the minmax level. The problem is that

3’s actions may send information to 1 and 2, who could use that information

to enhance the correlation between their actions. Even if m is larger than k,

3 needs to use her advantageous information with care so as not to reveal it

to 1 and 2.

Our main technical contribution is to devise and analyze a strategy for 3
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that allows her to exploit the limited recall capacities of 1 and 2 while not

revealing any information that might help 1 and 2 correlate against her. We

measure the correlation between 1 and 2 (against 3) by the average per-stage

mutual information7 of their joint actions given the history recalled by 3.

Theorem 2.1 establishes that the correlation between 1 and 2 is at most C k
m

,

where C is a number that depends on the number of pure actions in the one-

stage game. In particular, if m � k then 1 and 2 cannot correlate against

3; therefore, 3’s minmax level is asymptotically at least her minmax level in

the one-stage game.8

In Section 5.2 we extend our result to games with any number of players.

1.1 Equilibrium payoffs with bounded complexity

Bounded complexity may give rise to new equilibrium outcomes that were

not present in the unrestricted repeated game, and it may also exclude equi-

librium outcomes. The set of equilibrium payoffs would still be folk-theorem-

like; i.e., it would consist of approximately all feasible payoffs that are above

each player’s minmax. The difference from the unrestricted repeated game

(i.e., the classic folk theorem) is that the minmax under bounded complexity

may be different from the minmax of the one-stage game.

For example, consider a player who is stronger than the other players, i.e.,

7Mutual information (see Section 3 for definition) is a useful measure of correlation

between two random variables. Independent actions such as p above have 0 bits of mutual

information, whereas fully correlated actions such as c have 1 bit of mutual information.

Any convex combination of p and c has a fraction of a bit of mutual information, which is

continuously increasing as the combination moves toward c.
8If, in addition, logm � k, then 3 cannot predict the actions of 1 and 2 (by Lehrer

1988); therefore 3’s minmax is asymptotically equal to her one-stage minmax.
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her recall capacity is larger than that of the others. It is not hard to show

that if the difference in strength is very large then her minmax is high. This

shrinks the set of equilibrium payoffs, compared to that set in the classic folk

theorem; and conversely for a sufficiently weaker player.

Moreover, even when all players are of equal strength (i.e., have the same

recall capacity), the minmax may drop below the one-stage minmax (Peretz

2013). Bavly and Neyman (2014) also “expand” the equilibrium payoffs (i.e.,

give an upper bound for a player’s minmax) in a different case. Our result

goes in the opposite direction, since our bound on the correlation between

Players 1 and 2 implies a lower bound for the minmax of Player 3, which

equals the one-stage minmax minus a function9 of k
m

.

Thus far, it was known only that a player who is a lot stronger than the

opposition, i.e., exponentially stronger, can “see through” their correlation

(Lehrer 1988, Theorem 3; Bavly and Neyman 2014, Theorem 2.3). There-

fore, our result closes a significant gap in the characterization of equilibrium

payoffs.

The linear scale k
m

in our result is the best we could hope for, since Peretz

(2013) showed that being linearly stronger may not be enough to defend any

value beyond the one-stage correlated minmax.

The result is tight in another sense as well: the strongest player, unless

she is extremely strong, cannot hope for more than her one-stage minmax.

Lehrer (1988) showed that the minmax of a player who isn’t exponentially

stronger than the other players is at most her one-stage minmax. Therefore,

we can now say that, asymptotically, the minmax of a “moderately stronger”

9This function is at most proportional to the square root of k/m. In particular, it is

small when k/m is small.
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player is the same as her minmax in the one-stage game.

1.2 A few notes about the proof

What follows is not intended to be a proper “sketch” of the proof, but mainly

aims at presenting some of the ideas that drive it.

The following observation, of interest in its own right, plays an important

role in the proof. Consider two players who each choose a mixed k-recall

strategy (in particular, their randomization is independent). Although their

continuation strategies from some stage t on need not be independent,10 it

turns out they cannot be too far from it, due to their bounded memory.

Suppose that the third player uses an m-recall strategy. She can exploit

this fact during the following m stages or so. However, she cannot do so

directly, since her strategy cannot depend on the time t. Therefore, we first

define an auxiliary game as follows.

Fix a pair σ1, σ2 of mixed k-recall strategies of Players 1 and 2. The

auxiliary game is a zero-sum game between Bob (the maximizer) and Alice

(the minimizer). It is conceived by imagining the play of the original repeated

game during m consecutive stages, starting at some arbitrary point in time

t. Bob, “representing” 3, chooses a strategy to be played during these m

stages against σ1, σ2. However, Alice, representing 1 and 2, gets to choose

what supposedly was the k-length history preceding stage t. Moreover, she

can condition her choice on the realization of the strategies of 1 and 2.

The resulting artificial “continuation strategies” ( i.e., the continuation

after the k-length “memory” that Alice chooses) cannot be too far from

10For further discussion see Section 4.2.
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independent, as we already said. We then bound the average per-stage cor-

relation, and deduce that Player 3 (more precisely, Bob) does well in the

auxiliary game (skipping the details of how well).

The point of the auxiliary game is that, by a minmax theorem, there is

a mixed optimal strategy for Bob that is good against any choice of Alice.

Therefore, this strategy (employed by 3) is also good against σ1, σ2 during

m stages of the original game, starting at any t.

With (stationary) bounded recall, 3 cannot employ Bob’s optimal strategy

infinitely many times independently. But we show that it suffices to cyclically

repeat a long cycle consisting of many independent instances of Bob’s optimal

strategy.

2 Model and Results

Throughout, a finite three-person game in strategic form is a pair G = 〈A =

A1 × A2 × A3, g : A → [0, 1]3〉. Namely, it is assumed that the payoffs are

scaled11 between 0 and 1. The minmax value of player i ∈ {1, 2, 3} is defined

as

minmaxiG := min
xj∈∆(Aj)

j 6=i

max
ai∈Ai

gi(x−i, ai),

where ∆(X) denotes the set of probability distributions over a finite set X.

The correlated minmax value12 of player i ∈ {1, 2, 3} is defined as

cor minmaxiG := min
x−i∈∆(A−i)

max
ai∈Ai

gi(x−i, ai),

11This is merely a normalization: in games with a larger range of payoffs, some of our

derived constants should simply be multiplied by that range.
12Also known as the maxmin value.
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where A−i :=
∏

j 6=iAj.

We define a range of intermediate values between the minmax value and

the correlated minmax values. The h-correlated minmax value of player

i ∈ {1, 2, 3} (h ≥ 0) is defined as

cor minmaxiG(h) := min
x−i∈∆(A−i):∑

j 6=iH(xj)−H(x−i)≤h

max
ai∈Ai

gi(x−i, ai),

where H(·) is Shannon’s entropy function.13

The h-correlated minmax value is the value that player i can defend when

the other two players are allowed to correlate their actions up to level h. It

is a continuous non-increasing function of h. For h = 0, it is equal to the

(uncorrelated) minmax value. For h large enough (e.g., h = minj 6=i{ln |Aj|}),

it reaches its minimum, which is equal to the correlated minmax value.

Our main result uses the convexification of the h-correlated minmax value,

defined as follows: for a bounded function f : D → R defined on a convex

set D (⊂ R), the convexification of f is the largest convex function below f .

Namely,

(Vex f)(h) := sup{c(h) : c : D → R, c is convex, c(x) ≤ f(x) ∀x ∈ D}.

For T ∈ N ∪ {∞}, a (pure) strategy for player i ∈ {1, 2, 3} in the T -

fold repeated game is a function si : A<T → Ai, where A<T =
⋃

0≤t<T
At.

A random variable whose values are strategies is called a random strategy.

A probability distribution over strategies is called a mixed strategy. The

set of all strategies for player i is denoted by Σi
T . For a strategy si and a

history of play ht = (a1, . . . , at) ∈ At, the continuation strategy given ht,

13The quantity H(a) + H(b)−H(a, b) is called “mutual information” (see Section 3).
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denoted by si|ht , is the strategy induced by si and ht in the remaining stages

of the game, i.e., si|ht(a
′
t+1, . . . , a

′
t+r) = si(a1, . . . , at, a

′
t+1, . . . , a

′
t+r), for all

(a′t+1, . . . , a
′
t+r) ∈ Ar.

A k-recall strategy for player i is a strategy si ∈ Σi
∞ that depends only on

the last k periods of history. Namely, for any two histories of any length ā =

(a1, . . . , am−1) and b̄ = (b1, . . . , bn−1), if (am−k, . . . , am−1) = (bn−k, . . . , bn−1)

then si(ā) = si(b̄).

For a k-recall strategy si we can also define the continuation strategy

given a k-length suffix of history h ∈ Ak, instead of a complete history. This

is of course well defined, since k-recall implies that for any complete history

that ends with h the continuation strategy is the same. This includes, in

particular, the case where the complete history is h itself. Hence we can use

the above notation, si|h, also for a continuation strategy of a k-recall strategy

given a suffix.

The (finite) set of k-recall strategies for player i is denoted by Σi(k).

For natural numbers k1, k2, k3, the undiscounted T -fold repeated version

of G where each player i is restricted to ki-recall strategies is denoted by

GT [k1, k2, k3]. The payoff in this game is the average per-stage payoff, for

T < ∞, and the limiting average for T = ∞. Throughout, we always ar-

range the players’ order such that k1 ≤ k2 ≤ k3.

Our main result is the following theorem.

Theorem 2.1. For every finite three-person game G = 〈A, g〉 and every

ε > 0 there exists k0 ∈ N such that for every k3 ≥ k2 ≥ k1 ≥ k0 and
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T ∈ N ∪ {∞},

minmax3G
T [k1, k2, k3]

≥ (Vex cor minmax3G)

(
2 ln |A| · k2

k3

)
− ε

≥ minmax3G− 2

√
ln |A| · k2

k3

− ε .

By Peretz (2012), if log k3/k1 → 0 then

minmax3G
T [k1, k2, k3] ≤ minmax3G+ o(1).

Therefore, Theorem 2.1 is tight in the case where k3 is superlinear in k2 but

subexponential in k1.

In Section 5.2 we extend Theorem 2.1 to more than three players (Theo-

rem 5.2).

3 Preliminaries

This section presents some information-theoretic notions that are used in the

proof.

Shannon’s entropy14 of a discrete random variable x is the following non-

negative quantity:

H(x) = −
∑
ξ

P(x = ξ) ln(P(x = ξ)),

where 0 ln 0 = 0 by continuity.

The distribution of x is denoted by p(x). We have

H(x) ≤ ln(|support(p(x))|).
14In the literature, a similar definition using log2 instead of ln is also commonly referred

to as “Shannon’s entropy.”
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If y is another random variable, the entropy of x given y, defined by the chain

rule of entropy H(x|y) = H(x, y)−H(y), satisfies

H(x) ≥ H(x|y)

with equality if and only if x and y are independent. The difference I(x; y) =

H(x) − H(x|y) is called the mutual information of x and y. The following

identity holds:

I(x; y) = I(y;x) = H(x, y)−H(x|y)−H(y|x).

If z is yet another random variable, then the mutual information of x and y

given z is defined by the chain rule of mutual information:

I(x; y|z) = I(x, z; y)− I(z; y).

Mutual information is a useful measure of interdependence between a pair

of random variables. Another useful measure of interdependence is the norm

distance between the joint distribution and the product of the two marginal

distributions. A relation between these measures is given by Pinsker’s in-

equality:

‖p(x, y)− p(x)⊗ p(y)‖1 ≤
√

2I(x; y).

3.1 Neyman–Okada lemma

In a sequence of papers, Neyman and Okada (Neyman and Okada 2000, 2009,

Neyman 2008) developed a methodology for analyzing repeated games with

bounded memory. A key idea of theirs is captured in the following lemma.15

15For a proof see Peretz (2012, Lemma 4.2).
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Let x1, . . . , xm, y1, . . . , ym be finite random variables, and let y0 be a ran-

dom variable such that each yi is a function of y0, x1, . . . , xi−1. Suppose

that t is a random variable that distributes uniformly in [m] := {1, . . . ,m}

independently of y0, x1, . . . , xm, y1, . . . , ym. Then,

I(xt; yt) ≤ H(xt)−
1

m
H(x1, . . . , xm) +

1

m
I(y0;x1, . . . , xm).

The interpretation is that x1, . . . , xm is a sequence of actions played by an

oblivious player,16 y0 is a random strategy of a second player, and y1, . . . , ym

are the actions played by the second player.

Of special interest is the case where the oblivious player repeats the same

mixed action independently, namely, x1, . . . , xm are i.i.d. In this case we have

I(xt; yt) ≤
1

m
I(y0;x1, . . . , xm). (3.1)

4 Proof of Theorem 2.1

The second inequality in Theorem 2.1 is an immediate corollary of Pinsker’s

inequality. The payoff function g3 is 1-Lipschitz w.r.t. the ‖·‖1 norm; there-

fore, by Pinsker’s inequality,

cor minmax3G(h) ≥ minmax3G−
√

2h, ∀h ≥ 0,

and the function on the right-hand side is convex.

The main effort is to prove the first inequality of Theorem 2.1. In the

proof, for any given pair of mixed strategies σ1, σ2 of Players 1 and 2, we

describe a strategy σ3 of Player 3 that guarantees the required payoff. We

divide the stages of the game into blocks, and describe σ3 for each block. At

16An oblivious player is one who ignores the actions of the other players.
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the beginning of a block Player 3 should consider the continuation strategies

of 1 and 2. An important point is that these continuation strategies are ran-

dom variables that are a function of the initial strategies employed by 1 and

2 and of their memories at that point. Generally, the continuation strategies

of 1 and 2 need not be independent, nor even independent conditional17 on

the memories of 1 and 2.

This leads us to define and analyze the following auxiliary game. After-

wards, we will use this analysis to describe σ3.

4.1 An auxiliary two-person zero-sum game

For natural numbers k and m, and mixed strategies σi ∈ ∆(Σi
m+k) (i = 1, 2),

we define a two-person zero-sum game Γσ1,σ2,k,m between Alice, who is the

minimizer, and Bob, the maximizer (Alice is related to Players 1 and 2 in

the original game, and Bob is related to 3). The strategy space of Alice is

the set

XA =
{
ρ ∈ ∆(Σ1

m+k × Σ2
m+k × Ak) : ρ’s marginal on Σ1

m+k × Σ2
m+k is σ1 ⊗ σ2

}
.

The strategy space of Bob is XB = ∆(Σ3
m).

The strategies of Alice can also be described as follows. A pair of strate-

gies s1 ∈ Σ1
m+k and s2 ∈ Σ2

m+k is randomly chosen by nature, according to

the distribution σ1 ⊗ σ2. After seeing s1 and s2, Alice chooses a “memory”

h ∈ Ak (or, more generally, a distribution over Ak).

A pair of strategy realizations r = (s1, s2, h) ∈ Σ1
m+k × Σ2

m+k × Ak and

17We elaborate on this point in Section 4.2.
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z ∈ Σ3
m induces a play a1, . . . , am of Players 1, 2, 3, defined by

ait =


si(h1, . . . , hk, a1, . . . , at−1) for i = 1, 2,

z(a1, . . . , at−1) for i = 3

(4.1)

for any 1 ≤ t ≤ m. That is, we look at an m-fold repeated game, in which

Player 3 simply employs the strategy z, and Players 1 and 2 act as if the

actual play was preceded by the history h (in other words, they employ si|h).

Hence, a pair of strategies ρ ∈ XA and ζ ∈ XB induces a probability

measure over plays of length m. The payoff that Alice pays Bob is defined

by

Γσ1,σ2,k,m(ρ, ζ) = Eρ,ζ

[
1

m

m∑
j=1

g3(aj)

]
. (4.2)

Since the action spaces are convex and compact, the game Γσ1,σ2,k,m admits

a value.

Lemma 4.1. For every three-person game G, natural numbers k and m, and

mixed strategies σ1 ∈ ∆(Σ1
k+m) and σ2 ∈ ∆(Σ2

k+m),

Val(Γσ1,σ2,k,m) ≥ (Vex cor minmax3G)

(
2k ln |A|

m

)
.

The rest of this section is devoted to proving Lemma 4.1. Our next lemma

states that the convexification of the h-correlated minmax value of G is at

most the mh-correlated minmax value of the m-fold repetition Gm.

Lemma 4.2. Let s1 and s2 be random strategies that assume values in Σ1
m

and Σ2
m, respectively. There exists a pure strategy s3 ∈ Σ3

m such that the play

a1, . . . , am induced by (s1, s2, s3) satisfies

E

[
1

m

m∑
t=1

g3(at)

]
≥ (Vex cor minmax3G)

(
I(s1; s2)

m

)
.
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Proof. The strategy s3 ∈ Σ3
m myopically best-responds to (s1, s2) on any

possible history. Formally, s3 is defined recursively as follows. Suppose that

s3 is already defined on A<t−1, for some 1 ≤ t < m. Then, s1, s2, and s3

induce a random play āt−1 = (a1, . . . , at−1) ∈ At−1 and random actions for 1

and 2 at time t, a1
t and a2

t . We define s3 on At−1 by choosing

s3(ht−1) ∈ arg max
a3∈A3

E[g3(a−3
t , a3)1{āt−1=ht−1}], ∀ht−1 ∈ At−1.

For every t ∈ [m] and every ht−1 ∈ At−1 for which P(āt−1 = ht−1) > 0,

define Y (ht−1) = I(a1
t ; a

2
t |āt−1 = ht−1). By the definition of s3,

E[g3(at)|āt−1] ≥ cor minmax3G(Y (āt−1)),

for every t ∈ [m].

Now, take t̂ to be a random variable uniformly distributed in [m] inde-

pendently of (s1, s2). Let Y = Y (āt̂). Then,

1

m

m∑
t=1

E[g3(at)] = E[g3(at̂)] = E
[
E[g3(at̂)|āt̂−1]

]
≥ E[cor minmax3G(Y )] ≥ (Vex cor minmax3G) (E[Y ]) .

Since E[Y ] = 1
m

∑m
t=1 I(a1

t ; a
2
t |āt−1), it remains to show that

m∑
t=1

I(a1
t ; a

2
t |āt−1) ≤ I(s1; s2).

To this end, we use the inequality

H(U) ≤ I(V ;W ) +H(U |V ) +H(U |W )
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with U = ām, V = s1, and W = s2, as follows.

m∑
t=1

I(a1
t ; a

2
t |āt−1)

=
m∑
t=1

H(a1
t , a

2
t |āt−1)−

m∑
t=1

H(a1
t |a2

t , āt−1)−
m∑
t=1

H(a2
t |a1

t , āt−1)

= H(ām)−
m∑
t=1

H(a1
t |a2

t , āt−1)−
m∑
t=1

H(a2
t |a1

t , āt−1)

≤ I(s1; s2) +H(ām|s1) +H(ām|s2)−
m∑
t=1

H(a1
t |a2

t , āt−1)−
m∑
t=1

H(a2
t |a1

t , āt−1)

= I(s1; s2) +
m∑
t=1

[
H(at|s1, āt−1)−H(a2

t |a1
t , āt−1)

]
+

m∑
t=1

[
H(at|s2, āt−1)−H(a1

t |a2
t , āt−1)

]
≤ I(s1; s2),

where the last inequality is explained as follows: a1
t is a function of āt−1 and

s1. On the one hand, it implies that H(a2
t |s1, āt−1) ≤ H(a2

t |a1
t , āt−1). On the

other hand, combined with the fact that a3
t is a function of āt−1, it implies that

H(at|s1, āt−1) = H(a2
t |s1, āt−1). Therefore, H(at|s1, āt−1) ≤ H(a2

t |a1
t , āt−1),

and similarly when switching between 1 and 2.

Proof of Lemma 4.1. Let ρ ∈ XA be any strategy of Alice. Let r = (s1, s2, h) ∈

Σ1
m+k × Σ2

m+k × Ak be Alice’s random strategy, i.e., a random variable dis-

tributed according to ρ.

Let Bob’s response to ρ be the strategy s3 ∈ Σ3
m given by Lemma 4.2

applied to the continuation strategies (s1
|h, s

2
|h). Recalling (4.1) and (4.2), the

payoff in Γ is the expectation of the average m-stage payoff induced by the

three strategies s1
|h, s

2
|h, s

3. Therefore,

Γ(ρ, s3) ≥ (Vex cor minmax3G)

(
I(s1
|h; s

2
|h)

m

)
.
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By the chain rule of mutual information,

I(s1
|h; s

2
|h) ≤ I(s1, h; s2, h) = I(s1; s2, h) + I(h; s2, h|s1)

= I(s1; s2) + I(s1;h|s2) + I(h; s2, h|s1) ≤ 2k ln |A| ,

where the last inequality holds since s1 and s2 are independent, and H(h) ≤

k ln |A|. It follows that

Γ(ρ, s3) ≥ (Vex cor minmax3G)

(
2k ln |A|

m

)
.

4.2 The maximizing strategy

We now return to the repeated game of Theorem 2.1. Assume w.l.o.g. that

k1 is as large as k2, and denote k = k1 = k2. For now let m be roughly equal

to k3. We give the exact value of m in Section 4.2.2.

For any pair of mixed strategies σi ∈ ∆(Σi(k)) (i = 1, 2) we describe a

strategy σ3 ∈ ∆(Σ3(m)) that achieves the required expected payoff against

σ1 and σ2. Note that σ3 is in fact a mixed strategy. Although the existence

of a good mixed response σ3 implies the existence of a good pure response

s3, our proof does not single out such an s3.

Consider the T -fold repeated game GT [k, k,m]. We assume first that T

is either a multiple of m3 or T =∞. The other values of T are treated later.

For now, let us just hint that the case of T < m3 is simpler, and that any

finite T can be divided into T = T1 + T2, where T2 is a multiple of m3 and

T1 < m3.

We divide the stages of the repeated game into blocks of size m. For

any block, let h ∈ Ak be the last k actions played before that block, and
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consider the random continuation strategies s1
|h and s2

|h. Although s1 and s2

are independent, s1
|h and s2

|h need not be independent (nor even independent

conditional on h or on the memory of Player 3), because there may be some

interdependence between s1, s2, and h. Player 3, having finite recall, may

not know exactly what this interdependence is since the joint distribution

of s1, s2, and h may differ from one block to the next. But consider the

corresponding auxiliary game Γσ1,σ2,k,m. The point is that Γ, being a zero-

sum game, has a (possibly mixed) optimal strategy ζ∗ of Bob that guarantees

the value against any strategy in XA, i.e., against any possible distribution

of s1, s2, and h.

Employing ζ∗ on a single block should do very well. But had Player 3

acted exactly the same in every block, s1 and s2 might have been able to learn

something about this during the game. And 3 cannot play infinitely many

independent instances of ζ∗, as we do not allow 3’s strategies to be behavioral.

Nevertheless, we show that it is sufficient that 3 cyclically repeats a long cycle

consisting of many independent instances of ζ∗.

Thus, the mixed strategy σ3 is defined as follows. Let z1, . . . , zm2 be i.i.d.

variables taking values in Σ3
m, with distribution ζ∗ ∈ ∆(Σ3

m). In any block

Bi = ((i− 1)m+ 1, . . . , im), Player 3 plays according to zi := zi mod m2 .

We examine the play inside any block Bi. Denote the last k periods of

play before Bi by hi. Denote the realizations of σ1 and σ2 by s1 and s2

respectively. Since s1 and s2 are k-recall strategies, the play in Bi is induced

by s1
|hi , s

2
|hi , and zi. Furthermore, we only care about how s1 and s2 behave

in the first k + m periods. Denote the restriction of each sj to A<k+m by

s′j ∈ Σj
k+m (j = 1, 2).
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Let us now analyze the average per-stage payoff r3 that Player 3 receives

in m2 consecutive blocks, say, B1, B2, . . . , Bm2 . The analysis is performed by

taking a random variable î uniformly distributed on [m2] independently of

σ1, σ2, σ3 and estimating the expectation of the average per-stage payoff in

Bî.

Let (ρ, ζ) ∈ ∆(Σ1
k+m × Σ2

k+m × Ak × Σ3
m) be the joint distribution of

(s′1, s′2, hî, zî), where ρ is the joint distribution of (s′1, s′2, hî) and ζ = ζ∗ is

the distribution of zî. Since ρ is a possible strategy for Alice in the auxiliary

game (i.e., ρ ∈ XA), and ζ∗ is optimal for Bob,

Γσ1,σ2,k,m(ρ⊗ ζ) ≥ Val Γσ1,σ2,k,m ≥ (Vex cor minmax3G)

(
2k ln |A|

m

)
.

We regard the games played at each block B1, B2, . . . , Bm2 as stages of an

m2-fold repeated meta-game. Recall that r3 is the expected average per-stage

payoff of the meta-game, and hence it is also the expected payoff in Bî. Since

Bob’s payoff function in Γσ1,σ2,k,m is 1-Lipschitz, by Pinsker’s inequality,

r3 = Γσ1,σ2,k,m(ρ, ζ) ≥ Γσ1,σ2,k,m(ρ⊗ ζ)−
√

2I(s′1, s′2, hî; zî).

By the Neyman–Okada lemma (inequality 3.1), since each hi is a function

of (s′1, s′2, h1) and z1, . . . , zi−1,

I(s′1, s′2, hî; zî) ≤
1

m2
I(s′1, s′2, h1; z1, . . . zm2)

=
1

m2

(
I(s′1, s′2; z1, . . . zm2) + I(h1; z1, . . . zm2|s′1, s′2)

)
=

1

m2
I(h1; z1, . . . , zm2|s′1, s′2) ≤ k ln |A|

m2
≤ ln |A|

k0

.

It follows that

r3 ≥ (Vex cor minmax3G)

(
2k ln |A|

m

)
−
√

2 ln |A|/k0 .

21



4.2.1 Other values of T

If T is finite and not a multiple of m3, let T = T1 + T2 + T3, where: (i)

T1 + T2 < m3, (ii) m3 divides T3, (iii) T1 < m, and (iv) m divides T2. In the

last T3 stages, σ3 is defined as above, and the analysis is unaffected.

In the first T1 stages, σ3 can simply play perfectly against (σ1, σ2). By

Lemma 4.2, there is a strategy s3 ∈ Σ3
T1

that yields an expected average payoff

of at least minmax3G during these stages, since σ1 and σ2 are independent.

Therefore, a perfect play yields at least that much.

The next T2 stages are divided into blocks of length m, and an indepen-

dent instance of ζ∗ is played for each block.18 Formally, Let z1, . . . , zT2/m be

i.i.d. variables taking values in Σ3
m, with distribution ζ∗. In each block Bi,

σ3 plays according to zi. As above, the optimality of ζ∗ implies that the

expected average payoff in each Bi is ≥ (Vex cor minmax3G)
(

2k ln |A|
m

)
.

Overall, the expected average payoff is at least

(Vex cor minmax3G)

(
2k ln |A|

m

)
−
√

2 ln |A|/k0

in the last T3 stages, and we got a better bound for the first T1 + T2 stages.

4.2.2 Final adjustments

Strictly speaking, although the above strategy σ3 always focuses on one block

of length m, it need not be a k3-recall strategy. To make sure that it is,

we now make small modifications to σ3, and show that their effect on the

expected payoff is small.

18Proving Theorem 2.1 only for small values of T , say T < m3, is significantly simpler

and does not need to go through the auxiliary game. Since we needed the auxiliary game

for general values of T , we might as well utilize it in this part of the proof as well.
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Since the strategy σ3 cannot rely on the time t, we will make sure that

the strategy always “knows where we are” by making it play some predefined

actions in some stages. Dividing T into three phases of length T1, T2, and

T3 as above, we need to make sure of three things: knowing the index of the

current block in the second phase, knowing the index modulo m2 in the third

phase, and knowing where a block begins. In the first phase the history is

shorter than m; therefore, we know exactly where we are.

Assume w.l.o.g. that |A3| ≥ 2. Let γ ∈ A3 be some action of Player 3.

Denote a = b
√
mc and b = dlog|A3|(2m

2)e. The size of a block, m, is taken

as the maximal numbers such that k3 ≥ m+ max {a, b}.

Every block Bi begins with a + 1 stages in which Player 3 first plays

γ, and then plays some fixed action different from γ for a stages. Denote

this sequence of a + 1 actions by ᾱ. This is followed by a “counter” β̄i that

designates the current (second or third) phase plus the block index (i.e., the

absolute index in the second phase or the index modulo m2 in the third).

This counter has at most 2m2 different possible values; therefore, it requires

b stages.

The choice of m ensures that σ3 is a k3-recall strategy, since at any point

in time we can see, within the previous k3 stages, the last completed ᾱ and

the last completed counter.

In the rest of the block we play normally, except that we play the action

γ every a stages. This makes sure that we can find the ᾱ designating the

beginning of a block, because ᾱ contains a consecutive stages without γ.

The only modification needed in the proof is to replace the definition of

the auxiliary game Γ by that of the game Γ(ᾱ, β̄i, γ), defined the same except
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that the strategies of Bob are restricted to playing ᾱ in the first a stages, β̄i

in the following bi stages, and then γ every a stages. Elsewhere, a strategy

is free to choose anything, as before.

Otherwise the proof proceeds as above, and the analysis of the “free”

stages is unaffected. The payoff in the predetermined stages may of course be

low (recall that the payoff is always between 0 and 1). Therefore, in any block

we get the same average payoff as above, minus at most 1
m

((a+1)+b+m/a) '
1
m

(2
√
m+ log|A3|(2m

2)).

5 Extensions

We considered repeated games in which the payoff was the undiscounted

average of the stage payoffs, or the limiting average in the case of infinite

repetition. It is easily verified that the asymptotic form of our result still

holds for a discounted payoff, when the discount rate approaches 0.

Suppose that we allowed Players 1 and 2 to play mixtures of behavioral

ki-recall strategies, that is, a mixture of functions from Aki to ∆(Ai). Our

result holds in this model too, with σ3 unaltered (in particular, σ3 need not

toss coins). The reason is that the complexity limitations of these players

were used in the proof only to make the following assertion: the continuation

strategy of i at any point in time depends only on the last ki actions. The

assertion is true in this model as well.

Another plausible variation of the model is to allow strategies to depend

not only on the last ki actions, but also on calendar time. Here, too, our result

holds. The proof of this model is simpler since we only have to consider the

instance of the auxiliary game played at each block separately (Lemma 4.1).
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We do not have to worry about Player 3 being able to repeat a strategy

indefinitely. Note that it is crucial for Player 3 to condition her actions on

calendar time. Otherwise, if Players 1 and 2 conditioned on time while 3 did

not, any fixed (i.e., 0-recall) normal sequence of actions of Players 1 and 2

would seem random to Player 3.

5.1 Finite automata

Finite automata are another common model of bounded complexity in re-

peated games. An automaton of player i is a tuple A = 〈Z, z0, q, f〉. Z is a

finite set, and its elements are called states of A. z0 ∈ Z is the initial state.

q : Z×A−i → Z is the transition function. f : Z → Ai is the action function.

A induces a strategy in the repeated game as follows. Let zt ∈ Z denote

the state of the automaton at stage t. Before the game begins the state is the

initial state z0. The transition from one state to the next is determined by

the current state and the actions of the other players, i.e., zt+1 = q(zt, a
−i
t ).

In stage t, the strategy plays the action f(zt).

The complexity of a strategy is measured by the size (i.e., the number

of states) of the smallest automaton that implements this strategy. Any m-

recall strategy is implementable by an |A|m-automaton (but not vice versa),

simply by letting each state of the automaton correspond to a different pos-

sible recall.

If we allow the strategies of Players 1 and 2 to be implementable by

automata of size |A|ki , instead of ki-recall strategies, the result still holds,

with σ3 unaltered. The reason is, again, that the continuation strategy of i

at any point in time depends only on a limited source of information: the last
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ki actions in the case of bounded recall, or the current state of i’s automaton

in the case of automata. As the automaton has only |A|ki possible states, we

get exactly the same information-theoretic inequalities.

On the other hand, since σ3 is implementable by an automaton of size

|A|k3 , we get the following theorem, which is the counterpart of Theorem 2.1

for finite automata.

Theorem 5.1. For every finite three-person game G = 〈A, g〉 and every ε > 0

there exists s0 ∈ N such that for every s3 ≥ s2 ≥ s1 ≥ s0 and T ∈ N ∪ {∞},

minmax3G
T (s1, s2, s3) ≥ (Vex cor minmax3G)

(
2 ln s2 ln |A|

ln s3

)
− ε,

where GT (s1, s2, s3) denotes the undiscounted T -fold repetition of G, where

each player i is restricted to an si-automaton.

We also note that the above argument still holds if we allow for automata

with stochastic transitions, i.e., transition functions of the form q : Z×A−i →

∆(Z).

5.2 Many players

In this Section we extend our result on the minmax in a three-player repeated

game to a game with any number of players. In order to do that, we need to

define a notion that extends the notion of mutual information to more than

two random variables. One such extension is the following.

The total correlation of a tuple of discrete random variables x1, . . . , xd is

defined as

C(x1, . . . , xd) =
d∑
i=1

H(xi)−H(x1, . . . , xd) .
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The Kullback–Leibler divergence from p to q (a.k.a. relative entropy ; see, e.g.,

Cover and Thomas 2006, Chapter 2.3), where p and q are discrete probability

distributions, is defined asDKL (p‖q) =
∑

ξ p(ξ) ln p(ξ)
q(ξ)

. The total correlation

of x1, . . . , xd also equals the divergence from the joint distribution of these

variables to the product of their marginal distributions, i.e.,

C(x1, . . . , xd) = DKL ( p(x1, . . . , xd )‖ p(x1)⊗ . . .⊗ p(xd) ) . (5.1)

We extend the notion of h-correlated minmax to an n-player game in

strategic form 〈N,A, g〉 by

cor minmaxiG(h) := min
x−i∈∆(A−i):
C(x−i)≤h

max
ai∈Ai

gi(x−i, ai),

where x−i is regarded as an (n− 1)-tuple. Note that this is in fact the same

expression used to define this notion in Section 2.

The following theorem is the n-player extension of Theorem 2.1.

Theorem 5.2. For every finite game G = 〈N,A, g〉 and every ε > 0 there

exists k0 ∈ N such that for every kn ≥ . . . k2 ≥ k1 ≥ k0 and T ∈ N ∪ {∞},

minmaxnG
T [k1, . . . , kn]

≥ (Vex cor minmaxnG)

(
(n− 1) ln |A| · kn−1

kn

)
− ε

≥ minmaxnG−
√

2(n− 1) ln |A| · kn−1

kn
− ε .

5.2.1 Proof of Theorem 5.2

The conditional total correlation of x1, . . . , xd given z is defined by

C(x1, . . . , xd|z) =
d∑
i=1

H(xi|z)−H(x1, . . . , xd|z) .
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Lemma 5.3. (i) If yi is a function of xi for every 1 ≤ i ≤ d, then

C(x1, . . . , xd)− C(y1, . . . , yd) ≥ C(x1, . . . , xd|y1, . . . , yd).

(ii) Moreover, if yi is a function of z and xi for every 1 ≤ i ≤ d, then

C(x1, . . . , xd|z)− C(y1, . . . , yd|z) ≥ C(x1, . . . , xd|y1, . . . , yd, z).

In particular, C(x1, . . . , xd) ≥ C(y1, . . . , yd) on (i), and C(x1, . . . , xd|z) ≥

C(y1, . . . , yd|z) on (ii).

Proof. If b is a function of a, then H(a) = H(a, b); therefore,

H(a)−H(b) = H(a, b)−H(b) = H(a|b).

To prove (i), write

C(x1, . . . , xd)− C(y1, . . . , yd)

=

(
d∑
i=1

H(xi)−H(x1, . . . , xd)

)
−

(
d∑
i=1

H(yi)−H(y1, . . . , yd)

)

=
d∑
i=1

(H(xi)−H(yi))− (H(x1, . . . , xd)−H(y1, . . . , yd))

=
d∑
i=1

H(xi|yi)−H(x1, . . . , xd|y1, . . . , yd)

≥
d∑
i=1

H(xi|y1, . . . , yd)−H(x1, . . . , xd|y1, . . . , yd)

= C(x1, . . . , xd|y1, . . . , yd).

The proof of (ii) is similar.

We first prove the second inequality of Theorem 5.2, similarly to Theo-

rem 2.1. A more general form of Pinsker’s inequality states that for discrete
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probability distributions p and q, ‖p− q‖1 ≤
√

2DKL (p‖q). The payoff

function gn is 1-Lipschitz w.r.t. the ‖·‖1 norm; therefore, by (5.1),

for any h ≥ 0, cor minmaxnG(h) ≥ minmaxnG−
√

2h ,

and since the function on the right-hand side is convex, it is smaller than

(Vex cor minmaxnG)(h) as well.

To prove the first inequality of Theorem 5.2, we need to review the proof

of Theorem 2.1, written for three-player games, and adapt it to general n-

player games. Let us start by reviewing Lemma 4.2, which turns out to

require most of the work.

The general form of the lemma would state that against any tuple of ran-

dom strategies s1, . . . , sn−1, Player n has a pure response sn that yields her

an expected average of at least (Vex cor minmaxnG)
(
C(s1,...,sn−1)

m

)
. Review-

ing the proof of Lemma 4.2, the adaptation to n players is straightforward

up to the point where the proof says that it remains to show that
m∑
t=1

I(a1
t ; a

2
t |āt−1) ≤ I(s1; s2) .

Hence, the general proof should show that
∑m

t=1 C(a1
t , . . . , a

n−1
t |āt−1) ≤

C(s1, . . . , sn−1). We write it as a separate lemma:

Lemma 5.4. Let s1, . . . , sd be random strategies of the players of a d-player

repeated game. The play a1, a2, . . . induced by (s1, . . . , sd) satisfies that for

any m,
m∑
t=1

C(a1
t , . . . , a

d
t |āt−1) ≤ C(s1, . . . , sd) .

Proof. For any t ≥ 1 and 1 ≤ i ≤ d, ait is a function of āt−1 and si. By

Lemma 5.3 (ii),

C(s1, . . . , sd|āt−1)− C(a1
t , . . . , a

d
t |āt−1) ≥ C(s1, . . . , sd|āt) , (5.2)
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because (a1
t , . . . , a

d
t , āt−1) = āt.

Rearrange (5.2) as

C(a1
t , . . . , a

d
t |āt−1) ≤ C(s1, . . . , sd|āt−1)− C(s1, . . . , sd|āt) ,

and sum both sides from t = 1 to m, to get

m∑
t=1

C(a1
t , . . . , a

d
t |āt−1) ≤ C(s1, . . . , sd|ā0)− C(s1, . . . , sd|ām) ,

and the RHS is simply C(s1, . . . , sd)− C(s1, . . . , sd|ām) ≤ C(s1, . . . , sd).

Adapting the construction of the auxiliary game to n players is, again,

straightforward, with Bob representing Player n and Alice representing Play-

ers 1, . . . , n− 1. We should show that the value of this game is at least

(Vex cor minmaxnG)

(
(n− 1) ln |A| · kn−1

kn

)
,

generalizing Lemma 4.1.

Where the proof of Lemma 4.1 shows that I(s1
|h; s

2
|h) ≤ 2k ln |A|, the

adapted proof should show that C(s1
|h, . . . , s

n−1
|h ) ≤ (n − 1)k ln |A|, where

h and si are as in the auxiliary game. si|h is a function of the pair (h, si),
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therefore,

C(s1
|h, . . . , s

n−1
|h ) ≤ C

(
(h, s1), . . . , (h, sn−1)

)
=

n−1∑
i=1

H(h, si)−H
(
(h, s1), . . . , (h, sn−1)

)
=

n−1∑
i=1

H(h, si)−H(h, s1, . . . , sn−1)

≤
n−1∑
i=1

[
H(h) +H(si)

]
−H(s1, . . . , sn−1)

= (n− 1)H(h) +
n−1∑
i=1

H(si)−H(s1, . . . , sn−1)

= (n− 1)H(h) ≤ (n− 1)k ln |A| ,

where the last inequality holds since the size of the support of h is at most

|A|k, and the preceding equality holds since s1, . . . , sn−1 are independent.

The adaptation of the rest of the proof of Theorem 2.1, once we are

done with the auxiliary game, is straightforward. Against the strategies

σ1, . . . , σn−1, Player n derives the maximizing strategy from the auxiliary

game as we describe there, and the number of players she faces is immaterial.

5.3 An open question

Theorem 2.1 sets an asymptotic lower bound on the minmax value in the

presence of bounded recall. A comparison with Peretz (2013) shows that our

lower bound is of the correct order of magnitude, but it does not suggest

that the bound is tight. Providing tight bounds for the minmax value (of

three-person games) with bounded recall remains an open problem.

To pin down the problem, let us focus on the three-person Matching
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Pennies game G = 〈A, g〉 in which Player 3’s payoff function is given in (1.1).

Does minmax3G
∞[k, k, k] converge as k →∞, and, if so, what is the limit?
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