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We suppose that players in a cooperative game are located within a graph structure, 
such as a social network or supply route, that limits coalition formation to coalitions 
along connected subsets within the graph. This in turn leads to a more general study of 
coalitional games in which there are arbitrary limitations on the collections of coalitions 
that may be formed. Within this context we define a generalisation of the Shapley value 
that is studied from an axiomatic perspective. The resulting ‘graph value’ (and ‘S-value’ in 
the general case) is endogenously asymmetric, with the automorphism group of the graph 
playing a crucial role in determining the relative values of players.
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1. Introduction

One of the standard interpretations of the Shapley value, as a measure of the average marginal contribution of a player 
to each and every possible coalition, may strain credulity if taken too literally in a great many social situations. This holds 
particularly when players may, due to affinity, consanguinity, or other factors, have clear preferences for joining certain 
coalitions as opposed to others. Consider, for just one example, a job market. Is it not more likely that a potential hire will 
join a company if he knows someone within the company? How likely is it for a job seeker to join a company if she does 
not share a common language with any of its current employees?1

Cases in which many theoretically possible coalitions will not realistically be formed are not limited to social situations 
alone. If one is studying cooperative coalitions amongst players connected via supply routes, computer networks or web 
links, there are clear structural reasons for entirely excluding some coalitions that would otherwise play a role in the 
calculation of the classic Shapley value and including in consideration instead only coalitions that are connected along the 
underlying network.

Networks, for obvious reasons, have increasingly been a focus of study in several disciplines over the past two decades.2

Continuing in the spirit of a line of research initiated by Myerson (1977), who first combined coalitional games and graphs, 
here we study the interplay of network or graph structures and coalitional game theory by limiting consideration of potential 
coalitions solely to coalitions that are connected along the graph.3 Doing so, in the tradition of measuring average marginal 
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1 These examples have similar motivations to those used to motivate hedonic games, as introduced in Drèze and Greenberg (1980). In the literature 
review section below we detail how our model differs from that of hedonic games.

2 Perhaps a contemporary canonical example would be an on-line social network, with coalitions naturally growing in size by way of adding at each 
stage friends of current members.
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contributions, yields different values that we argue may be more appropriate for assessing the values of players in many 
situations than the classic Shapley value.

The potential applications of a graph value are multiple. A partial list may include: coalition formation in complex 
political situations; studying power relations and cost sharing in situations with geographic constraints such as supply 
routes along roads or rivers; coalition formation in social networks; and perhaps even cooperation between neighbouring 
genes inside chromosomes.

This requires departing in some ways from the classical model of transferable utility games, which associates a certain 
worth to every coalition. That model implicitly assumes that the only force that drives the formation of coalitions is the 
worth they generate. The model we introduce here takes into account a proximity relation between players, represented as 
edges of an undirected graph (a symmetric binary relation). It is assumed that a player can only join a coalition if he or she 
is connected to one of its members. As a result, the only admissible coalitions are the connected subgraphs.

Once one has taken this step, however, it is natural to continue on to consider coalitional games in which some coalitions 
are inadmissible and cannot be formed, for arbitrary reasons, not necessarily because they are not connected along a path in 
a network. There may be many natural reasons for such a restriction. For example, there may be a cost incurred for the very 
formation of a coalition, depending on coalition membership, size and so forth. If the cost is too prohibitive, some coalitions 
may never be formed and should, therefore, be considered ‘inadmissible’. Past history or cultural and social taboos may in 
some cases also place the formation of certain coalitions entirely out of the realm of possibility.

This leads to the formal consideration of games with admissible structures, that is, games in which only a subset A of 
the set 2N of all potential coalitions is admissible.4 In such games, the characteristic function is defined only for coalitions 
in A, yielding a different theory from that of classical coalitional game theory.

Imposing the standard Shapley axioms (additivity, symmetry, null player and efficiency) to games with admissible struc-
tures, we define a value concept that we term an S-value. It might naïvely appear that doing so would easily yield a unique 
value generalising the Shapley value. Matters, however, turn out to be far from this simple. Even the existence of an S-value 
in a general game with an admissible structure is not always guaranteed; one must either assume further connectivity 
properties or assume more axioms.

Strengthening the additivity axiom in the list of the Shapley axioms to linearity is both necessary and sufficient for the 
existence of an S-value (Theorem 1). This alone does not yet grant uniqueness. We provide a characterisation of uniqueness 
of the S-value in Theorem 2.

After this study of values over games with admissible structures, which is interesting in its own right, we can apply 
the results to the special case of admissibility structures defined by graphs. We term monotonic S-values adapted to such 
admissibility structures graph values.

The study of graphs and cooperative games originated in Myerson (1977), where an undirected graph describes cooper-
ation possibilities between the players. Two properties of allocation rules are proposed: efficiency and fairness. Myerson’s 
efficiency axiom postulates that the total value allocated to the members of a connected component of a graph is equal to 
their coalitional worth. Fairness postulates that the marginal contribution of a link is the same for both participants of that 
link.

Under the assumptions of efficiency and fairness, Myerson obtains a unique value expressed as the standard Shapley 
value of an auxiliary transferable utility game. In this auxiliary game, the worth of connected coalitions is the same as their 
worth in the original game; and the worth of the other coalitions is the sum of the worths of their connected components.

Our model differs conceptually from Myerson’s model in several ways.

• Myerson (1977) assumes a fixed coalitional function while letting network structures vary, with axioms focussed on 
how allocation rules are related as the network structure changes. We consider the network as given, with our axioms 
focussed on how allocation rules are related as coalitional functions vary, in the tradition of Shapley (1953).

• We do not postulate Myerson’s fairness. Rather than that, we strive to hew as close as possible to Shapley’s axioms. 
Myerson’s model implicitly assumes superadditivity by granting (disconnected) coalitions the sums of the worths of 
their connected components. In our model disconnected coalitions are simply impossible, hence they do not assume 
any worth and we need not assume superadditivity.

One major difference between Myerson’s and our results is that in our model a unique graph value cannot always, or 
even in most cases, be defined. This is shown by Theorem 3, which shows that the graph value is unique only over two 
graphs: the complete graph (where it is the classic Shapley value) and the cycle. In all other graphs, the standard axioms 
used for the study of the Shapley value are insufficient to single out a unique graph value.

Beyond Myerson (1977), there have been many studies of coalitional games defined over graphs. These include Jackson
(2005), Deng and Papadimitriou (1994), Kalai and Zemel (1982), Bachrach and Porat (2010) (and Rey and Rothe, 2015 and 
Rey et al., 2016, building on Bachrach and Porat, 2010). We review the models of those papers, and compare them to our 
model here, in the literature review section (Section 5).

4 It should be noted that we do not depart from the classic assumption of complete information. The study of coalitional games of incomplete information 
is important in its own right. See, for example, Forges and Serrano (2011).
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Our results shed new light on the axiomatics underlying the classic Shapley value and also indicate that the theory of 
values in games with admissibility structures is likely to be a rich theory, requiring the addition of more axioms to replicate 
the straightforward existence and uniqueness that make the classic Shapley value such a compelling solution concept.

2. From the Shapley value to graph values

In this section we formally introduce the concepts of admissibility structures, the S-value (which axiomatically extends 
the Shapley value) and the special case of graph values, which obtain when admissible coalitions are determined by con-
nectivity requirements in graphs.

2.1. Motivation

As motivation, we begin with consideration of a well-known interpretation of the classic Shapley value. We suppose 
as background the standard model of a coalitional game, i.e., a set N of players, of cardinality n, is given, along with a 
characteristic function v which is a real-valued function v : 2N → R with the convention that v(∅) = 0.

The players are asked to enter the room in a random order i1, i2, . . . , in . As each player i j enters, he or she joins the 
coalition S = {i1, i2, . . . , i j−1} comprised of the players who have previously entered.

One could then possibly assign player i j the marginal value that he or she adds to S , i.e., v(S ∪ i j) − v(S). That, however, 
would introduce a dependency on a particular random order. To avoid this, the celebrated Shapley value of a player (Shapley, 
1953) is defined to be the expected marginal contribution he or she adds to a coalition formed under such a random 
ordering, with respect to the uniform distribution over all orderings of N .

Underlying this story are several implicit assumptions, including:

(1) The assumption that all possible coalitions, e.g., all subsets of N , are admissible for consideration and may be con-
structed.

(2) The assumption that coalitions are constructed monotonically, that is, that new players are always added to existing 
coalitions but players in a coalition never leave.

(3) The assumption that players are always added one at a time to existing coalitions.

As noted in the introduction, however, there are many natural situations in which the assumption that all possible 
coalitions are admissible is untenable. In what follows we therefore consider values in more general situations in which the 
set of coalitions that are admissible is limited. It turns out that this alone is not sufficient; the ways in which coalitions can 
be constructed, by adding or subtracting players, are also important for the study of values over games with admissibility 
structures.

2.2. Preliminaries

A finite set of players N of cardinality n = |N| is assumed fixed throughout.
In a classical coalitional game theory model, one would proceed at this point to define a characteristic function assigning 

a worth to every possible subset of N . However, since we wish to generalise the Shapley value, we restrict the collection of 
coalitions which may be formed in our model. A collection A ⊆ 2N of subsets of N that includes the empty set ∅ and the 
grand coalition N defines an admissibility structure, denoted (N, A).

The elements of A intuitively play the role of the coalitions that may be formed, excluding the elements of 2N \A from 
consideration. They will, therefore, formally be termed admissible coalitions, although we will often just call them coalitions
for short.

Only admissible coalitions have a defined worth in the model, which affects the range of possible games. A coalitional 
game over an admissibility structure (N, A) is given by a characteristic function v which is a real-valued function v : A → R

with the convention that v(∅) = 0. Denote the collection of all coalitional games over a fixed admissibility structure (N, A)

by K(N, A), or simply by K for short when N and A are fixed and understood.
In the special case in which the admissibility structure satisfies the property that A = 2N , the above definitions reduce 

to the standard definitions used in classical coalitional game theory.
Symmetry, as determined by automorphisms, will play a major role in the study of K. We denote by Aut(N, A) the set 

of all permutations over N that preserve A, meaning bijective mappings π : N → N such that {i ∈ N : π(i) ∈ A} ∈ A, for all 
A ∈ A. With tolerable abuse of notation, given a permutation π : N → N we also consider π to be a mapping π : 2N → 2N

by defining π({i1, i2, . . . , ik}) = {π(i1), π(i2), . . . , π(ik)}. We will also abuse notation by sometimes writing i instead of the 
singleton set {i} when no confusion is possible, for the sake of readability.

We say that player i ∈ N is a null player in a game v ∈ K, if v(S) = v(S ∪ i), whenever S, S ∪ i ∈ A. An A-preserving 
permutation f : N → N defines an operator on games, f ◦ v(S) = v( f −1(S)). A game v ∈ K is called monotonic if v(S) ≤
v(T ), for every S, T ∈A such that S ⊂ T .
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2.3. Generalising the Shapley value

Conceptually, a value for a coalitional game is a way of assigning a payoff to every player in the game. A value for 
player i on K is, therefore, a function ϕi : K → R. Given a value for each player, a (group) value on K, ϕ = (ϕ1, ϕ2, . . . , ϕn), 
concatenates the individual values into a payoff vector in RN for each game.

The classic Shapley value was defined for A = 2N in Shapley (1953) using four axioms. These four Shapley axioms form 
the basis for our generalisation of Shapley’s value to more general admissibility structures.

Definition 1. We say that ϕ :K(N, A) →R is an S-value if it satisfies the following axioms:

Additivity: ϕ(v + u) = ϕ(v) + ϕ(u), for every v, u ∈K.
Symmetry: ϕπ(i)(π ◦ v) = ϕi(v), for every i ∈ N , v ∈K, and π ∈ Aut(N, A).
Null player: ϕi(v) = 0 whenever i is a null player in v .
Efficiency: 

∑
i∈N ϕi(v) = v(N), for every v ∈K.

We say that ϕ is monotonic if it satisfies

Monotonicity: ϕi(v) ≥ 0, for every player i and every monotonic game v .

We say that ϕ is linear if it satisfies

Linearity: ϕ(av + u) = aϕ(v) + ϕ(u), for every v, u ∈K and a ∈ R.

Note that additivity is a special case of linearity; the latter is a stronger assumption than the former.
The classic Shapley value is the special case of an S-value when A = 2N . In that case, Lloyd Shapley proved that existence 

and uniqueness are guaranteed. In the more general setting, existence might not hold, and it is natural to inquire under 
what conditions S-values exist and when they are unique.

As noted above, the proofs in Shapley (1953) make use only of the axioms of the additivity, symmetry, null player 
and efficiency axioms. The ‘players entering a room one by one’ explanation of the Shapley value as expected marginal 
contribution is a later interpretation. It makes implicit use of a ‘connectivity’ property inherent in the case A = 2N , namely 
that adding one player to an already existing coalition always yields a new, admissible coalition.

As we will show, it turns out that in the general setting the existence of an S-value depends exactly on assuming a 
connectivity property for the admissibility structure. We say that (N, A) is connected if there exists a finite sequence of 
admissible coalitions ∅ = S0, S1, . . . , Sk = N such that |(Sl \ Sl−1) ∪ (Sl−1 \ Sl)| = 1 for every 1 ≤ l ≤ k. Such a sequence is 
called a chain.

The definition of a chain deliberately invokes the player-by-player construction of coalitions taken from the intuitive 
interpretation of the Shapley value. It is, however, more general in that the chain process admits the possibility of coalitions 
shrinking (by one player at a time) as well as expanding.

Example 2. The admissibility structure

(N = {1,2,3,4,5},
A = {∅, {1}, {1,2}, {1,2,3}, {2,3}, {2,3,4}, {2,3,4,5}, {1,2,3,4,5}})

is connected. The elements of A in the above order form a chain. In fact, this is the only chain for this admissibility 
structure. Removing any element from A would make it disconnected. �

Given a chain c = (S0, S1, . . . , Sk) it is natural to define a value ψc by

ψc
i (v) =

k∑
l=1

1(i ∈ (Sl \ Sl−1) ∪ (Sl−1 \ Sl))[v(Sl) − v(Sl−1)], (1)

where 1(�) denotes the indicator function of the proposition �, i.e., in Equation (1) for each 1 ≤ l ≤ k, player i is credited 
with the marginal contribution v(Sl) − v(Sl−1) if and only if i is in Sl \ Sl−1 or alternatively Sl−1 \ Sl; otherwise, player i
adds no marginal contribution for l and therefore is credited with zero. The total value ψc

i (v) for player i, by Equation (1), 
is then the sum of all such non-zero marginal contributions over all elements of the chain c = (S0, S1, . . . , Sk).

A (linear) S-value is then defined as

ϕc =
∑

π∈Aut(N,A)

ψπ(c),

where π(c) := (π(S0), . . . , π(Sk)).



26 Z. Hellman, R. Peretz / Games and Economic Behavior 108 (2018) 22–36
In general, ϕc need not be monotonic, but if S0 � S1 � · · · � Sn (equivalently, k = n, i.e., the coalition construction process 
monotonically adds one new player at each step, never subtracting) then ϕc is monotonic. We call such a chain monotonic. 
If a monotonic chain for (N, A) exists, we say that (N, A) is monotonically connected.

The admissibility structure in Example 2 is not monotonically connected. Adding the coalition {1, 2, 3, 4} makes it mono-
tonically connected, admitting exactly one monotonic chain

∅, {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,4,5}.
It turns out that the existence of chains is necessary for the existence of the corresponding values.

Proposition 1. An admissibility structure admits an S-value if and only if it is connected.

Proposition 2. An admissibility structure admits a monotonic S-value if and only if it is monotonically connected.

The proof of Propositions 1 and 2 is deferred to Section 3 after a discussion on the structure of such values.
Every solution concept that satisfies additivity and the null player axiom is linear over Q. Recalling that a continuous 

linear operator is one that maps bounded sets into bounded sets, one has that if an operator ϕ :K(N, A) →R is monotonic 
then it is continuous5 therefore, any monotonic S-value is linear.

The relation between (additive) S-values and linear S-values is as follows. Any S-value is linear over Q. Let K1 be the 
linear space over Q of Q-valued games. The space of real-valued games K can be represented as a direct sum of copies 
of K1. An S-value on K is obtained by independently specifying it on each one of the copies of K1. Specifying the same 
value on each one of the copies yields a linear S-value (on K).

Consequently, both the existence and the uniqueness of an S-value coincide with the existence and the uniqueness of 
a linear S-value. We can thus concentrate on the class of linear S-values in our quest for conditions on existence and 
uniqueness of S-values in general. This is the content of Theorem 1.

Theorem 1. An admissibility structure admits an S-value if and only if it admits a linear S-value. Furthermore, an S-value is uniquely 
defined if and only if a linear S-value is uniquely defined.

In order to attain a similar relation between linear and monotonic S-values, we assume an additional connectivity con-
dition. We say that an admissibility structure (N, A) is well-connected if there is a monotonic chain through any admissible 
coalition. In other words, for every admissible coalition S there is a monotonic chain S0 � S1 � · · · � Sn , such that S = Sl
for some 0 ≤ l ≤ n.

Example 3. We saw above that the admissibility structure

(N = {1,2,3,4,5},
A = {∅, {1}, {1,2}, {1,2,3}, {2,3}, {2,3,4}, {2,3,4,5}, {1,2,3,4}, {1,2,3,4,5}})

is monotonically connected. It is, however, not well-connected: there is no monotonic chain containing {2, 3}, {2, 3, 4}, or 
{2, 3, 4, 5}. Removing these three coalitions yields a well-connected admissibility structure

(N = {1,2,3,4,5},
A′ = {∅, {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,4,5}}). �

On a well-connected admissibility structure, the set of all linear S-values is the affine span of the set of all monotonic 
S-values; therefore, we have the following theorem:

Theorem 2. With respect to any well-connected admissibility structure, the following statements are equivalent:

(1) The S-value is uniquely defined.
(2) Every S-value is monotonic.
(3) Every S-value is linear.
(4) Every linear S-value is monotonic.

5 An explanation of the standard fact that any monotonic Q-linear operator ϕ : K → RN is continuous: by additivity, it is sufficient to prove that 
ϕ is continuous at 0. The R-linear space K has a finite basis of monotonic games; therefore, it is sufficient to prove that limn→∞ ϕ(an U ) = 0, whenever 
limn→∞ an = 0 and U is a monotonic game. Assume w.l.o.g. that 0 ≤ an ≤ qn , for some qn ∈Q, limn→∞ qn = 0. By Q-linearity, qnϕ(U ) = ϕ(qnU ) = ϕ(anU ) +
ϕ((qn − an)U ). By monotonicity, the two summands on the right-hand side are non-negative. Since the left-hand side converges to 0, so do the two 
summands on the right-hand side.
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Fig. 1. The directed acyclic graph associated with the 4-cycle. The admissible coalitions are subsets of Z4 of the form {i, i + 1 . . . , i + k}, 0 ≤ i,k ≤ 3.

2.4. Graph values

Our original motivation for studying values over admissibility structures was consideration of coalition formation over 
graphs. Graphs provide a natural class of admissibility structures: a coalition over a graph is admissible only if it can be 
constructed step-by-step by spanning a tree in the graph. More formally, a connected graph G = (N, E) whose vertex set is 
the set of players defines an admissibility structure (N, A(G)), where A(G) is the collection of all connected subsets S ⊂ N . 
Namely, between any i, j ∈ S there is a path of G that visits only vertices of S . A monotonic S-value adapted to such an 
admissibility structure is called a graph value.

By Theorem 2, a graph G admits a unique graph value if and only if it admits a unique S-value. We immediately know 
at least one graph over N that admits a unique graph value: the admissibility structure (N, 2N = A(Kn)) of the complete 
graph Kn over N (i.e., the graph in which each player is connected by an edge to every other player) is exactly the set 2N . 
The graph value in this case is, therefore, the unique classic Shapley value.

Which other graphs over N admit a unique graph value? Surprisingly, apart from the complete graph there is only one
other graph that admits a unique graph value.

Theorem 3. The graphs on which the graph value is uniquely defined are exactly the complete graph Kn and the cycle Cn.

On the way to proving the above theorems we characterise the values that satisfy subsets of the axioms. These results 
are presented in Section 3 and summarised in Table 1.

3. Values on admissibility structures

In this section we show that many different classes of values can be defined, depending on which subsets of the Shapley 
axioms on well-connected admissibility structures are assumed. These classes are summarised at the end of the section in 
Table 1.

3.1. Coalitional DAG and n-linear values

An admissibility structure (N, A) is associated with a directed acyclic graph (DAG) DA = (A, E(A)) satisfying the prop-
erties that its vertex set is A and there is an arc from S to T if and only if T = S ∪ i, for some i ∈ N \ S (see an example in 
Fig. 1). Note that an undirected path from ∅ to N corresponds to a chain, a directed path corresponds to a monotonic chain, 
and the fact that there are exactly one source and one sink corresponds to (N, A) being well-connected.

Values that satisfy the axioms of linearity and null player correspond to assignments of real numbers to the arcs of the 
coalitional DAG.

Before proving the above statement, let us fix some useful notation. Let {χT }T ∈A\{∅} be the standard basis for K =
K(N, A) over R. That is,

χT (S) =
{

1 if S = T ,

0 if S �= T .

For a collection of coalitions B ⊂ A \ {∅}, we define χB = ∑
T ∈B χT , with tolerable abuse of notation. We also denote 

χ⊇T = χ{S∈A:S⊇T } and χ�T = χ{S∈A:S�T } .
For a coalition T ∈ A, let T + be the set of all players i ∈ N \ T such that T ∪ i ∈ A. Similarly, let T − be the set of all 

players i ∈ T such that T \ i ∈A. For i ∈ N , we define A−i = {T ∈A : i ∈ T +}.
If ϕ :K → RN is linear, we have

ϕi(v) = ϕi

(∑
T ∈A

v(T )χT

)
=

∑
T ∈A

v(T )ϕi(χT ). (2)

If i ∈ T + , then i is a null player in χ{T ,T ∪i}; therefore, if ϕ satisfies linearity and the null player axiom, we have ϕi(χT ) +
ϕi(χT ∪i) = 0. Since the players not in T + ∪ T − are null players in χT , Equation (2) becomes
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ϕi(v) =
∑

T ∈A:i∈T +
pi

T (v(T ∪ i) − v(T )), (3)

where pi
T = ϕi(χT ∪i).

We call values that satisfy both the null-player and the linearity axioms n-linear values. From Equation (3) we get a 
one-to-one correspondence between the n-linear values on (N, A) and functions from E(A) to R.

Proposition 3. The values satisfying the linearity and null-player axioms are exactly all the values of the form

ϕi(v) =
∑

T ∈A−i

pi
T [v(T ∪ i) − v(T )],

where {pi
T : i ∈ N, T ∈A−i} are arbitrary real numbers.

In the rest of this section, we gradually introduce further axioms and examine the constraints that these axioms impose 
on the possible values of {pi

T }.

3.2. The dummy axiom and probabilistic values

The dummy axiom asserts that the value of a player whose marginal contribution is constant is exactly that constant. 
Formally, a player i is called a dummy player with marginal contribution di ∈ R in a game v ∈ K(N, A), if A−i �= ∅ (i has a 
marginal contribution) and v(T ∪ i) − v(T ) = di , for every T ∈A−i .

If di = 0 then i is also a null player. If di �= 0, we say that i is a proper dummy player.
We say that ϕ :K →RN satisfies the dummy axiom if

Dummy: ϕi(v) = di , whenever i is a dummy player with marginal contribution di in v .

From Equation (3) and the fact that whenever A−i �= ∅ there exists a game in which i is a proper dummy player (e.g., 
χ{T ∈A:i∈T }), we see that postulating the dummy axiom for n-linear values is equivalent to imposing the following constraint:∑

T ∈A−i

pi
T = 1, for every player i for whom A−i �= ∅. (4)

Proposition 4. The values satisfying the linearity, null-player, and dummy axioms are exactly all the values of the form

ϕi(v) =
∑

T ∈A−i

pi
T [v(T ∪ i) − v(T )],

where {pi
T : i ∈ N, T ∈A−i} are real numbers satisfying

∑
T ∈A−i

pi
T = 1,

for every i ∈ N such that A−i �= ∅.

Following Dubey and Weber (1977), a probabilistic value is a function ϕ : K → RN given by Equation (3) that satisfies 
Equation (4) and

pi
T ≥ 0, for every i and T ∈ A−i . (5)

If we allow pi
T to be negative (imposing only Equation (4)), we say that ϕ is a pre-probabilistic value.

Imposing Equation (5) is equivalent to postulating monotonicity for n-linear values.

Proposition 5. The monotonic values satisfying the linearity and null-player axioms are exactly all the values of the form

ϕi(v) =
∑

T ∈A−i

pi
T [v(T ∪ i) − v(T )],

where {pi : i ∈ N, T ∈A−i} are non-negative real numbers.
T
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Proof. If all pi
T ≥ 0 then Equation (3) yields a monotonic value. It remains to show the converse: every monotonic n-linear 

value ϕ satisfies ϕi(χT ∪i) ≥ 0, for all i ∈ N and T ∈ A−i . Take such ϕ , i, and T . Since i is a null player in both χ{T ,T ∪i}
and χ⊇T , we have 0 = ϕi(χT ) + ϕi(χT ∪i) = ϕi(χT ) + ϕi(χ�T ), and so ϕi(χT ∪i) = ϕi(χ�T ). The game χ�T is monotonic; 
therefore, ϕi(χ�T ) ≥ 0. �

Propositions 4 and 5 together yield the following corollary.

Corollary 1. A function ϕ :K → RN is

– a pre-probabilistic value if and only if it satisfies the linearity, null player, and dummy axioms;
– a probabilistic value if and only if it satisfies the linearity, null player, dummy, and monotonicity axioms.

3.3. Efficiency, flows, and random order values

We now introduce efficiency. First we remark that, in conjunction with n-linearity, efficiency implies the dummy axiom. 
To see that, suppose ϕ is an efficient n-linear value. Let v ∈ K(N, A) be a game in which player i is a dummy player with 
marginal contribution di . Let u = diχ{T ∈A:i∈T } . Player i is a null player in v − u; therefore, ϕi(v) = ϕi(u). All of the players 
other than i are null players in u, and so ϕi(u) = u(N) = di , by efficiency.

A flow from vertex s to vertex t in a DAG is an assignment of real-valued weights to arcs such that the total weight of 
the incoming arcs is equal to the total weight of the outgoing arcs at every vertex other than s and t . A unit flow is a flow 
in which the total weight of arcs pointing to t is one.

Efficient n-linear values are related to flows on the coalitional DAG.

Proposition 6. The values satisfying the linearity, null-player, and efficiency axioms are exactly all the values of the form

ϕi(v) =
∑

T ∈A−i

pi
T [v(T ∪ i) − v(T )],

where {pi
T : i ∈ N, T ∈A−i} constitutes a unit flow.

Proof. Let ϕ : K(N, A) → RN be an n-linear value associated with weights {pi
T : i ∈ N, T ∈ A−i} through Equation (3). If ϕ

is efficient, then for any T ∈A \ {∅} we have

χT (N) =
∑
i∈N

ϕi(χT ).

Since

χT (N) =
{

0 if T �= N ,

1 if T = N ,
ϕi(χT ) =

⎧⎪⎨
⎪⎩

pi
T \i if i ∈ T −,

−pi
T ∪i if i ∈ T +,

0 otherwise,

we have∑
i∈T −

pi
T \i =

∑
i∈T +

pi
T , for all T ∈ A \ {∅, N}, (6)

and ∑
i∈N−

pi
N\i = 1. (7)

Conversely, if {pi
T : i ∈ N, T ∈ A−i} satisfies Equations (6) and (7), then the associated n-linear value is efficient. Indeed, 

for every v ∈K(N, A),∑
i∈N

ϕi(v) =
∑
i∈N

∑
T ∈A−i

pi
T (v(T ∪ i) − v(T )) (by Equation (3))

=
∑

T ∈A\{∅}
v(T )

⎡
⎣∑

i∈T −
pi

T \i −
∑
j∈T +

p j
T

⎤
⎦

= v(N) (by Equations (6) and (7)). �
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In what follows, unless specified otherwise, the term flow means a flow on the coalitional DAG from ∅ to N . That is, it is 
an assignment of real numbers {pi

T : i ∈ N, T ∈ A−i} that satisfies Equation (6). A unit flow means such an assignment that 
additionally satisfies Equation (7). If all the weights satisfy the constraint that pi

T ≥ 0, then it is called a non-negative (unit) 
flow.

From Propositions 5 and 6 we immediately obtain the following corollary.

Corollary 2. The monotonic values satisfying the linearity, null-player, and efficiency axioms are exactly all the values of the form

ϕi(v) =
∑

T ∈A−i

pi
T [v(T ∪ i) − v(T )],

in which {pi
T : i ∈ N, T ∈A−i} constitutes a non-negative unit flow.

Propositions 1 and 2 follow readily:

Proof of Propositions 1 and 2. The proof follows from the fact that a (non-negative) unit flow exists if and only if there is 
an undirected (directed) path from ∅ to N in DA . �

Monotonic efficient n-linear values have the following interpretation: the players enter the room in a random order 
i1, i2, . . . , in . The value of player i is his or her expected marginal contribution with respect to that random order.

So far, this story follows the standard interpretation of the classic Shapley value. However, in our context, in order 
for the marginal contribution to be well defined, we must require that the players in the room at any given time form an 
admissible coalition (with probability one). This is equivalent to requiring that the coalitions Sk = {i1, . . . , ik} (k = 0, 1, . . . , n) 
form a monotonic chain. Weber (1988) calls a value obtained in this way from a probability distribution over monotonic 
chains a random order value. We use a slightly more general definition: for any monotonic chain c, the value ψc (defined 
by Equation (1)) or any convex combination of such values will be called a random order value. An affine combination of 
random order values is called a pre-random order value.

Proposition 7. The monotonic values satisfying the linearity, null-player, and efficiency axioms are exactly the random order values.

Proof. For any monotonic chain c, ψc satisfies linearity, null-player, efficiency, and monotonicity. Each one of these axioms 
is preserved under convex combinations; therefore, random order values satisfy these axioms.

Conversely, by Corollary 2, the set of monotonic efficient n-linear values correspond to the set of non-negative unit flows 
on the coalitional DAG. The set of non-negative unit flows is a convex polytope given by Equations (5), (6), and (7). The 
extreme points of this polytope are unit flows supported on a single directed path; therefore, any non-negative unit flow is 
a convex combination of such paths. The proof is concluded with the observation that the value induced by any unit flow 
supported on a path S0 S1 · · · Sn is exactly ψ S0,S1,...,Sn . �

Non-negative flows are supported on directed paths from the source ∅ to the sink N; therefore, random order values do 
not depend on the worth of coalitions that are not contained in any monotonic chain. Removing these coalitions from A
does not change the set of random order values. Let (N, A) be a monotonically connected admissibility structure. Define 
A′ ⊆A as the largest sub-collection of coalition w.r.t. (N, A′) being well-connected. Explicitly,

A′ = {T ∈ A : DA contains a directed path from ∅ to N through T }.
Proposition 8. The affine space of pre-random order values on a monotonically connected admissibility structure (N, A) is isomorphic 
to the affine space of pre-random order values on (N, A′) through the natural isomorphism

κ : (RN)K(N,A′) → (RN)K(N,A),

(κϕ)(v) = ϕ(v |A′).

Any pre-random order value is efficient and n-linear. On well-connected admissibility structures, the converse is also 
true.

Proposition 9. The pre-random order values on a well-connected admissibility structure are exactly the efficient n-linear values.

Proof. The coalitional DAG of a well-connected admissibility structure has a single source ∅ and a single sink N . In light 
of Proposition 6 and Corollary 2, the proof follows from the combinatorial fact that on a finite DAG with one source s and 
one sink t , every unit flow from s to t is an affine combination of non-negative unit flows from s to t (Lemma 4). �

From Propositions 8 and 9 we have the following corollary.
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Corollary 3. The affine space of pre-random order values on a monotonically connected admissibility structure (N, A) is isomorphic 
to the affine space of efficient n-linear values on (N, A′) through the natural isomorphism κ of Proposition 8.

Lemma 4. Let D be a finite DAG with one source s and one sink t. Every unit flow from s to t is an affine combination of non-negative 
unit flows from s to t.

Proof. Let f : E(D) → R be a unit flow from s to t . We prove the lemma by induction on the number of arcs e such 
that f (e) < 0. Let e ∈ E(D) with f (e) < 0. Extend the arc e to a maximal simple directed path p. Since s and t are the 
only source and sink, p is a simple directed path from s to t . Let g be the non-negative unit flow supported on p. We can 
express f as an affine combination of unit flows

f = (1 + | f (e)|) f + | f (e)|g
1 + | f (e)| − | f (e)|g,

where g is non-negative and f +| f (e)|g
1+| f (e)| has fewer negative edges than f . �

3.4. The symmetry projection

Recall that Aut(N, A) acts on games v ∈ K(N, A) by

(π ◦ v)(T ) = v(π−1(T )).

By identifying vectors in RN with additive games it is standard to define right and left actions of Aut(N, A) on values 
ϕ :K(N,A) →RN by

(π ◦ ϕ)(v) = π ◦ (ϕ(v)),

(ϕ ◦ π)(v) = ϕ(π ◦ v).

The conjugation action

ϕ �→ π ◦ ϕ ◦ π−1

preserves each one of the axioms: additivity, linearity, null-player, dummy, efficiency, and monotonicity separately. Therefore, 
we can think of symmetry as the property of being a fixed point of a mixing operator S ym defined by

S ym ϕ = 1

|Aut(N,A)|
∑

π∈Aut(N,A)

π ◦ ϕ ◦ π−1.

Note that a value is symmetric if and only if its conjugation orbit is a singleton.
The operator S ym is a projection from the set of values (RN )K(N,A) to the set of symmetric values S ym 

(
(RN )K(N,A)

)
. 

Additionally, for any subset X ⊂ (RN )K(N,A) obtained by postulating a subset of the above axioms, S ym(X) is the set of 
symmetric values satisfying that subset of axioms.

Since S ym is a linear operator, we get the following characterisation of the linear S-values.

Proposition 10. The monotonic S-values on a well-connected admissibility structure (N, A) are exactly the random order values 
defined by Aut(N, A)-invariant distributions over chains on (N, A).

Proposition 11. With respect to a well-connected admissibility structure, the affine space of linear S-values is exactly the affine span 
of the set of monotonic S-values.

3.5. Additivity and characterisation of S-values

In this section we finally present the proofs of Theorems 1 and 2.

Proof of Theorem 1. The additivity and null player axioms imply linearity over Q. Denote the Q-linear space of all rational 
games by

K1 = {v ∈ K(N,A) : v(S) ∈Q, ∀S ∈ A}. (8)

For a real number x �= 0 let

Kx = xK1 = {v ∈ K(N,A) : x−1 v(S) ∈ Q, ∀S ∈ A}. (9)
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Table 1
Axiomatics summary for well-connected admissibility structures.

n-Linear value +: Equivalent to:

Dummy Pre-probabilistic value
Dummy, monotonicity Probabilistic value
Efficiency Pre-random order value
Efficiency, monotonicity Random order value
Efficiency, symmetry Aut(N,A)-invariant pre-r.o.v.
Efficiency, monotonicity, symmetry Aut(N,A)-invariant r.o.v.

For any Q-linear function ψ :K(N, A) →RN and any x ∈ R \ {0}, let ψx be the restriction of ψ to Kx . Let ϕx be the unique 
R-linear extension of ψx to K(N, A). Note that ϕx is a linear over R.

The transformation ψ �→ ϕx preserves efficiency and symmetry, since linear extensions preserve properties defined by 
linear equalities (and symmetry is characterised as a fixed point of a linear operator).

We show that ψ �→ ϕx preserves the null-player axiom. Suppose i ∈ N is a null player in a game v = ∑
T ∈A rT xχT . We 

can write v = ∑
T ∈A−i rT xχT ,T ∪i +∑

T :i /∈T −∪T + rT xχT . Player i is a null player in each one of the summands; therefore, if ψ
satisfies the null player axiom, then so does ϕx , since

( fx)i(v) =
∑

T ∈A−i

rT ψ(xχT ,T ∪i) +
∑

T :i /∈T −∪T +
rT ψ(xχT ) = 0.

It follows that an admissibility structure admits an S-value if and only if it admits a linear S-value.
Suppose now that ψ is an S-value. Then ϕx , for each x, is a linear S-value. If there is only one linear S-value, then ψ is 

uniquely defined on every Kx , and since K(N, A) = ∑
x∈R\{0} Kx , ψ is uniquely defined on K(N, A). �

We next turn to the proof of Theorem 2.

Proof of Theorem 2. The equivalence between the uniqueness of the S-value and linear S-value is established in Theorem 1. 
When they are not unique, one can take two different linear S-values ϕ and ψ . Let B ⊂ R be a basis for R over Q. Take 
some x ∈ B. Define a Q-linear value η by specifying, using a basis for K(N, A) over Q,

η(bχT ) =
{
ϕ(bχT ) if b = x,

ψ(bχT ) if b �= x

for every b ∈B and T ∈A.
The restriction of η to every Kb (for all b ∈ B, using the denotation of Equation (9)) satisfies the Shapley axioms; 

therefore, η is an S-value. If η were R-linear, then we would have η = ϕ since they agree on Kx which spans K(N, A)

over R. Similarly, we would have η = ψ , since they agree on some Kb , b ∈ B \ {x}. This would be a contradiction, hence η
is not R-linear.

Well-connected admissibility structures always admit a monotonic value. By Proposition 5 the space of linear values is 
the affine span of the set of monotonic values. It follows that the uniqueness of the latter implies the uniqueness of the 
former. Since the set of monotonic S-values is bounded, it can be equal to its affine span only if it is a single point. �
3.6. Summary of the axiomatics of values

Table 1 summarises the different classes of values obtained by postulating various subsets of the Shapley axioms on a 
well-connected admissibility structure.

4. Graph value

Recall that a connected graph G = (N, E) whose vertex set is the set of players defines an admissibility structure 
(N, A(G)), where A(G) is the collection of all connected subsets of N . A graph value on G is a monotonic S-value adapted 
to (N, A(G)).

Note that the automorphism group of the admissibility structure Aut(N, A(G)) is also the automorphism group of the 
graph Aut(G). Any monotonic chain can be identified with an admissible ordering of the players, i.e., an enumeration of 
the players {i1, i2, . . . , in} = N such that {i1, . . . , ik} is connected for all k = 1, . . . , n. A probability distribution on the set of 
admissible orderings is called a random order, and it is called an invariant random order if it is invariant under the action of 
Aut(G). By Proposition 10, the graph values on G are exactly the invariant random order values, namely, random order values 
defined through invariant random orders.

Example 5 (Spectrum value). Álvarez-Mozos et al. (2013) introduced the spectrum value, a graph value defined over Pn , the 
path on n vertices. Here, the edges are all pairs {k, k + 1}, k = 1, . . . , n − 1.
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In this case the set of automorphisms contains only two elements: the identity mapping and the mapping that reverses 
the ordering of the players (so that player 1 is mapped to player n, player 2 to player n − 1 and so on). �

Example 6 (Classic Shapley value). Let Kn be the complete graph over N . Since the action of Aut(Kn) on the admissible 
orderings is transitive, there is only one invariant random order (the uniform distribution) in this case; therefore, the graph 
value is uniquely defined.

This unique graph value in this case is precisely the classic Shapley value. �

The proof of the uniqueness of the classic Shapley value in Example 6 relies on the fact that there is only one invariant 
random order over the complete graph. In fact, the complete graph is the only graph on which there is only one invariant 
random order. The graph value in general is not unique, mainly because there may be several invariant random orders.

Nevertheless there is one more graph, in addition to the complete graph, on which the graph value is uniquely defined 
– the cycle Cn . This holds true despite the fact that the cycle Cn admits more than one invariant random order.

Example 7 (n-cycle). An n-cycle, for n ≥ 3 is the graph whose vertex set is {1, . . . , n} with edge set E = {{1, 2}, {2, 3}, . . . , {n −
1, n}, {n, 1}}.

Claim 1. The graph value over the n-cycle is unique for all n ≥ 3.

Proof. Let ϕ be any graph value over Cn . By construction, for each player i there are exactly two players j and k that are 
connected to i in Cn . Let T ⊂ N be a connected coalition of players in Cn . Define i to be an internal vertex of T if each of 
the two players j and k connected to i are also in T .

Consider the unanimity game χ⊇T with carrier T ∈A(Cn) \ ∅. If i is an internal vertex of T then i is pivotal with respect 
to a given admissible ordering if and only if i is the last player in that ordering. By symmetry, each internal player has an 
equal probability of being last; it follows that ϕi(χ⊇T ) = 1/n for all internal vertices i.

If T has a boundary (T �= N), then the two players on the boundary are symmetric and they must, therefore, receive the 
same value by the symmetry axiom. The players outside T are null players; therefore, by efficiency,

ϕ j(χ⊇T ) = 1

2

(
1 − |T | − 2

n

)
for each player j on the boundary of T .

This is sufficient to show that the graph value is unique over the n-cycle, since the unanimity games span the space of 
all games. Note that the graph value on the n-cycle is different from the classic Shapley value that assigns equal vales to all 
members of the carrier of a unanimity game. �

Subsequently, in the proof of Theorem 3 we will show that the complete graph and the cycle are, in fact, the only graphs 
on which the graph value is unique.

Finally, we consider one more example of a graph with an interesting graph value.

Example 8 (n-Star). The n-star graph is defined over the vertex set {0, 1, 2, . . . , n} with edges {{0, 1}, {0, 2}, . . . , {0, n}}. 
Consider the simple majority game v and any graph value ψ over the n-star graph. Then straightforward combinatorial 
calculations show that

ψ0(v) = 0

ψ1(v) = ψ2(v) = · · · = ψn(v) = 1

n
. �

The result in Example 8 is again very different from the Shapley value, because the internal vertex receives a zero value 
under all circumstances. This is because the graph value essentially counts the number of times each player is a pivot player 
among all admissible orderings. In the simple majority game over the star graph, the internal node can never be the pivot 
player in any admissible coalition.

This may at first seem surprising, since one natural interpretation of the internal node of a star graph is a market maker 
through whom everyone else needs to go to conduct trade, or similarly a hub for resource distribution. One might think 
this would grant the internal player a great deal of power, yet the axioms that we assumed, which are almost verbatim 
adaptations of the standard Shapley axioms for our setting in which only connected coalitions may be formed, end up 
giving that player zero value.

One explanation for this phenomenon is as follows. In the standard Shapley value approach, measuring the average 
marginal gain a player causes by joining coalitions is entirely equivalent to measuring the average marginal loss he causes 
by leaving coalitions. In the graph value setting, this equivalence no longer obtains. Since only connected coalitions may be 
formed, leaving a coalition is only possible if the remaining coalition is connected.
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4.1. Proof of Theorem 3

The proof is based on a combinatorial lemma that uses the following ad hoc definition: we say that a connected graph 
(N, E) satisfies the connected complements (CC) property if for any connected subset of the vertices A ⊂ N , the complement 
N \ A is connected, as well.

Lemma 9. The only graphs that satisfy the CC property are the complete graph Kn and the cycle Cn.

Proof. Clearly the complete graph and the cycle satisfy CC. Let G = (N, E) be a connected graph satisfying CC. Let 	 be 
G ’s maximum degree. That is, 	 is the maximal number of neighbours of any single vertex in N .

If 	 ≤ 2, then G is a collection of cycles, lines, and isolated vertices. Since G is connected, it is either a cycle, a line, or 
a single vertex. Lines of three vertices or more do not satisfy CC; therefore, G must be either a cycle, K1, or K2.

Assume now that 	 ≥ 3. The graph G has a spanning tree T with at least 	 leaves. One can find such a tree by starting 
at a maximal degree vertex, adding the edges around it, and completing to a spanning tree. Any two leaves of T are 
connected by an edge of G , since the rest of the vertices are connected (through T ).

Since the degree of any leaf is at most 	 and it is has edges to all other leaves plus one internal vertex, there are at 
most 	 leaves. It follows that there are exactly 	 leaves, and they are connected by vertex disjoint paths to the root vertex. 
If all of these paths are of length 1, i.e. T is a star, then G is a complete graph. Otherwise, at least one path is longer than 1. 
Say this path ends with the vertices x′ followed by x. Let y and z be two other leaves of T . The tree T ′ = T − x′x + yx is a 
spanning tree. Similarly to T , the leaves of T ′ are connected by edges of G . In particular, zx′ is an edge of G , but this is a 
contradiction since z cannot have more than 	 neighbours. �
Proof of Theorem 3 assuming Lemma 9. In one direction, the graph values on Kn and Cn are unique, since for Kn the graph 
and the classic Shapley values coincide, and for Cn the unique graph value is given by Claim 1.

The other direction of the proof proceeds in two steps.
Step 1. A graph G is called (vertex) transitive if for every two vertices there is an automorphism of G that maps one vertex 
to the other. The graph value is unique only on transitive graphs.

Supposing G = (N, E) is a non-transitive graph, we show that it has multiple values. Let x, y ∈ N be such that there is no 
automorphism of G that maps x to y. Let c and d be chains that begin at x and y, respectively. Let ϕ be the random order 
value supported on c’s orbit, and similarly ψ the graph value supported on d’s orbit. Consider the game v in which the 
worth of any non-empty coalition is 1. On one hand, ϕy(v) = 0, since y is never the first element of an automorphic image 
of c. On the other hand, ψy(v) > 0, since y is the first element of d. Therefore, ϕ and ψ are two different graph values.
Step 2. Any transitive graph that does not satisfy CC has multiple graph values.

Let G = (N, E) be a connected transitive graph that does not satisfy CC. Let A ⊂ N be a maximal connected set with 
respect to N \ A being disconnected. If N \ A contained more than two vertices, one of them could be added to A, and so A
would not be maximal. Therefore, N \ A must consist of exactly two vertices, say (x, y) /∈ E .

Let c be an admissible ordering ending with x and then y. Let d be an admissible ordering ending with an edge. Let ϕ
be the random order value supported on c’s orbit, and ψ be the same supported on d’s orbit. Let v be the unanimity game 
with carrier A ∪ {x}. For x to be pivotal in v with respect to an admissible ordering, the ordering must end with either x or 
xy. Since the graph is transitive the probability of the former event is 1

|N| , under any invariant probability. Since xy is not 
an edge, and d ends with an edge, none of the orderings in d’s orbit end with xy; therefore, ψx(v) = 1

|N| . The ordering c

does end with xy; therefore, ϕx(v) > 1
|N| , showing that ϕ and ψ are two different graph values.

From Steps 1 and 2, it follows that the graph value is unique only on graphs that satisfy CC. Lemma 9 says that these 
graphs are exactly Kn and Cn . �
5. Review of the literature

Our main inspiration, and the paper that is most similar in approach to this one, is Álvarez-Mozos et al. (2013), which 
proposes a way to measure the relative power of political parties in a parliament by explicitly taking into account a political 
spectrum. That paper notes that it is highly unlikely for a left-wing party to form a coalition with a party holding strongly 
diametrical right-wing views unless there are other parties in the coalition that can ‘bridge’ the ideological differences. In 
more general terms, a political party will tend to join a pre-existing coalition only if the coalition contains at least one 
other party that is ideologically close to it. To formalise this idea, Álvarez-Mozos et al. (2013) postulate that parties can 
be ordered along a political spectrum (i.e., a strict linear ordering), from right to left, and a coalition will form only if it 
consists of a consecutive range of ideological views along this spectrum.6

6 As here, Álvarez-Mozos et al. (2013) work with a weak version of symmetry and hence do not derive a unique value from the standard Shapley axioms 
alone. In that paper, an axiom reminiscent of various balanced contributions axioms, relating to unanimity games, needs to be added to attain uniqueness 
of the value.
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One possible shortcoming of that approach is that it may be artificial to ascribe all ideological differences to positioning 
along a single linear ordering. In practice, ideologies are often multidimensional, relating to several issues. That observation 
led to the model presented in this paper, which is a generalisation of the model in Álvarez-Mozos et al. (2013). As an added 
benefit, by extending the underlying topology of the connections between players to any graph, the model here is poten-
tially applicable to a very wide range of cooperative situations, including but by no means restricted to political-coalitional 
settings.

5.1. Weakening the axiom of symmetry

Weakening the axiom of symmetry for the sake of considering variations on the Shapley value is a very old idea. 
Weighted Shapley values were proposed by Lloyd Shapley himself in his seminal PhD thesis. Each weighted Shapley value 
associates a positive weight with each player. These weights are the proportions of the players’ shares in unanimity games. 
The symmetric Shapley value is the special case in which all weights are the same. This concept was axiomatically studied 
by Kalai and Samet (1997).

The weights in these models, however, are imposed exogenously, representing some pre-existing measure of the relative 
strengths of the players which is then used for calculating weighted Shapley values. In contrast, in the approach here 
asymmetries arise endogenously from the positioning of the players along the underlying graph structure.

5.2. Graphs and cooperative games in the literature

This paper is also far from the first to study situations in which not every coalition is feasible or equally likely. The 
issue is usually tackled by considering some structure on the set of players that circumscribes the way players can form 
coalitions. Games with these kind of structures are usually called games with restricted cooperation.

Among the earliest efforts in this direction, the beginnings of a large literature, are Aumann and Drèze (1975) and Owen
(1977). These start from the supposition that cooperative games are endowed with a coalitional structure, an exogenously 
given partition of the players. When coalitions are formed, the players interact at two levels: first, bargaining takes place 
among the unions and then bargaining takes place inside each union. Within each union, however, every possible coalition 
is admissible.

Edelman (1997) and Bilbao and Edelman (2000) take an approach similar to the one adopted in the present paper, using 
geometric constraints to dictate which coalitions may be formed and which are deemed impossible. They, however, use the 
theory of convex geometries as the basis for their research, as opposed to the model of connected graphs used here. In 
respect to the axiomatics our treatment more closely resembles Shapley’s axiomatics as opposed to the more descriptive 
approach of Bilbao and Edelman (2000).

The examples in the first paragraph of the introduction of this paper have similar motivations to those used to motivate 
hedonic games, as introduced in Drèze and Greenberg (1980). The model of this paper, however, differs in important ways 
from that of Drèze and Greenberg (1980). In hedonic games players have preferences over which coalitions they will join but 
there are no a priori limitations on which coalitions may be formed. In addition, the focus of Drèze and Greenberg (1980) is 
on studying the stability of coalitions and partitions, as players always have the option of moving between coalitions. In our 
paper, in contrast, the admissibility structure determines which coalitions can possibly be formed, and the solution concept 
we concentrate on is a value extending the Shapley value, rather than a stability concept.

Graphs first appear explicitly in the study of cooperative games in Myerson (1977), but in a different role from the one 
they have in this paper, as detailed in the introduction. Since then there have been many papers in the literature studying 
coalitional games in graph settings. For example, Jackson (2005) considers network games in which players can influence 
the structure of the network to serve their interests. Our graph value is different in that it exogenously imposes a fixed 
network structure.

Deng and Papadimitriou (1994) focus on the complexity of computing the Shapley value of certain graph-based games, 
namely a game in which players are nodes in a graph G with an integer weight associated with each edge, any coalition 
may be formed, and the worth of each coalition S is given by the weight of the subgraph of G induced by the coalition S . 
They show that although in general calculating the Shapley value of a coalitional game is exponential in complexity, in the 
special case of the games studied in their paper the Shapley value is easy to compute. All possible coalitions are admissible 
in the graph games of Deng and Papadimitriou (1994), hence their model differs fundamentally from the model in this 
paper. In Deng and Papadimitriou (1994), the role of the graph is not to limit possible coalitions but to serve as an auxiliary 
device for defining the worths of coalitions.

Kalai and Zemel (1982) introduced flow games, which are games defined on directed networks with a distinct source 
node and sink node. Players are associated with edges (not nodes) and for every possible coalition S , the worth of S is the 
value of the maximal source to sink flow through the edges associated with the members of S . Kalai and Zemel (1982)
show that every flow game is totally balanced and hence its core is non-empty. This is quite different from the model for 
graph values in this paper, in which edges are associated with players and nodes connect players.

Bachrach and Porat (2010) (followed by Rey and Rothe, 2015 and Rey et al., 2016) study the concept of path disruption 
games, in which agents controlling vertices of a graph may form coalitions intended to stop an adversary who is attempting 
to reach a particular target, following the edges of the graph, starting from a source vertex. A coalition that manages to 



36 Z. Hellman, R. Peretz / Games and Economic Behavior 108 (2018) 22–36
block the adversary gets a worth of 1, otherwise its worth is 0. Bachrach and Porat (2010) consider the core and Banzaf 
power indices of path disruption games. Such graph-based games differ from those studied here in that coalitions of path 
disruption games need not be path connected along the graph.

5.3. Modelling impossible coalitions

One may propose modelling impossible coalitions by setting their worths to zero while all other coalitions have positive 
worths. However, the choice of zero as the worth of impossible coalitions would be rather arbitrary and unjustified, as it 
makes the model variant under conditions of strategic equivalence.

A situation in which the above is particularly problematic is cost sharing models (Megiddo, 1978; Granot and Huberman, 
1981; Young, 1985). Consider, for example, organisations attempting to establish a communication network or supply route 
between themselves. Setting up a link between two organisations induces a cost. Due to physical constraints or geographic 
barrier, not every pair of organisations can be linked directly, while indirect connections via a sequence of links requires 
the active cooperation of all the organisations along these links. Examples may include a network of monetary transactions 
between banks or commodity flows between countries. The cost associated with a connected (admissible) coalition is the 
minimal total cost of links that connect the members of that coalition (minimal spanning tree). The cost of setting up the 
entire network has to be divided amongst the players (organisations).

The Shapley value, with its axioms interpreted as describing acceptable requirements for ‘fair’ cost allocation, has been 
proposed as the solution for cost sharing problems (the literature on this is vast, going back at least as far as Shubik, 
1962). When some coalitions are deemed impossible, one could be tempted to compute an appropriate Shapley value by 
associating an extremely large cost with each impossible coalition. This approach does not work, since very large costs 
greatly distort the resultant Shapley value. Some players will pay very large costs whereas others will receive very large 
payments (negative cost). As the costs associated with impossible coalitions grow, the actual costs of the links become 
negligible. The present paper proposes a solution that generalises the Shapley value to situations in which some coalitions 
are impossible while avoiding these potential conceptual pitfalls.
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