

Learning Cycle Length Through Finite Automata
Author(s): Ron Peretz
Source: Mathematics of Operations Research, Vol. 38, No. 3 (August 2013), pp. 526-534
Published by: INFORMS
Stable URL: https://www.jstor.org/stable/24540867
Accessed: 25-10-2020 14:13 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics
of Operations Research

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 MATHEMATICS OF OPERATIONS RESEARCH

 Vol. 38, No. 3, August 2013, pp. 526-534
 ISSN 0364-765X (print) | ISSN 1526-5471 (online)

 http://dx.doi.Org/10.1287/moor.l 120.0582
 ©2013 INFORMS

 Learning Cycle Length Through Finite Automata
 Ron Peretz

 Department of Mathematics, London School of Economics, London WC2A 2AE, United Kingdom, ronprtz@gmail.com,
 http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx7KeyValue=r. perez@lse.ac.uk

 We study the space-and-time automaton-complexity of two related problems concerning the cycle length of a periodic stream
 of input bits. One problem is to find the exact cycle length of a periodic stream of input bits provided that the cycle length
 is bounded by a known parameter n. The other problem is to find a large number k that divides the cycle length. By "large"
 we mean that there is an unbounded increasing function /(«), such that either k is greater than f(n) or k is the exact cycle
 length.

 Our main results include that finding a large divisor of the cycle length can be solved in deterministic linear TIME and
 sub-linear SPACE, whereas finding the exact cycle length cannot be solved in deterministic TIME x SPACE smaller than
 a constant times n squared. Results involving probabilistic automata and applications to rate-distortion theory and repeated
 games are also discussed.

 Key words', automaton-complexity; games with bounded complexity; rate-distortion theory; sub-linear space algorithm
 MSC2000 subject classification: Primary: 68Q45; secondary: 91A26, 68Q30
 OR/MS subject classification: Primary: statistics: pattern analysis; secondary: games/group decisions: noncooperative;

 analysis of algorithms: computational complexity
 History: Received May 11, 2010; revised February 23. 2011, December 13, 2011, November 8, 2012. Published online in

 Articles in Advance March 13, 2013.

 1. Introduction. We study two related problems, CYCLE-LENGTH and CYCLE-DIVISOR. The input of
 these problems is a periodic stream of bits whose cycle length is bounded by a known parameter n. In the
 CYCLE-LENGTH problem the output is the exact cycle length. In the CYCLE-DIVISOR problem, the output
 is either the exact cycle length or a large divisor of the cycle length, a number greater than some function of n
 that diverges to infinity as n grows. The complexity is measured in terms of the SPACE, the logarithm of the
 number of states in an automaton that solves the problem, and the TIME required to reach a terminal state.
 We also consider the SPACE x TIME complexity which is the minimum of the function SPACE • TIME over
 all finite automata that solve the problem. We analyze the worst input against a deterministic automaton, and
 against a probabilistic automaton (a probability measure over deterministic automata). In the probabilistic case
 we require that the probability of computing a correct output is arbitrarily close to one.

 Our findings can be summarized as follows:
 • CYCLE-DIVISOR can be solved in deterministic SPACE o(n), and TIME O(n).
 • CYCLE-LENGTH cannot be solved in deterministic SPACE x TIME smaller than Q(n2).
 • CYCLE-LENGTH can be solved in probabilistic SPACE o(n), and TIME O(n).
 • CYCLE-LENGTH can be solved in deterministic SPACE O(nL), and TIME O(n/L), for any positive

 L< 1.

 The above says that CYCLE-DIVISOR is strictly easier than CYCLE-LENGTH. In fact, our positive results
 are all reductions to the CYCLE-DIVISOR problem. Our first theorem provides an upper bound for the deter
 ministic complexity of CYCLE-DIVISOR. We do not know if this bound is tight. We are also unaware of a
 better upper bound for probabilistic CYCLE-DIVISOR.

 Section 4 contains an application of the CYCLE-DIVISOR upper bound to the automaton-complexity of
 minimal distortion functions, a topic in information theory. In §5 we discuss the motivation behind this work,
 repeated games with finite automata.

 2. Results. A deterministic finite automaton is a tuple (2, S, st, /, H, O, g), where
 • 2 is a finite set of two or more elements, the input alphabet;
 • S is a finite set, the states;

 • s,€S is the initial state;
 • /: S x 2 -> S is the transition function;
 • H c S is the set of terminal states;

 • O is the output domain;
 • g: H -» O is the output function.
 Given a sequence of input letters a,, a2, ■ ■ ■, the run of the automaton is a sequence of states , s2,...,

 defined recursively by

 N=N> st+]=f(s„at).

 526

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS 527

 We say that an automaton halts at time t given the input a, if t is the first time the run visits a terminal state.
 That is, t = min ft': st, € H). In this case, we say that, given a, the automaton halts in t steps outputting g(st).

 Let 2 be a finite alphabet. The set of n-periodic sequences is denoted 2<n) = {(a,) e 2N: Vt eN at = a/+n}.
 The set of periodic sequences whose cycle length is at most n is denoted 2(-"' = (J*=i The exact cycle
 length of a periodic sequence a, denoted p(a), is the smallest integer n such that a is n-periodic. Formally, for
 a e Ur=i P(a) = a £ S(t)} = gcd{/r: a e 2(t)}.

 We refer to the cardinality of the input alphabet |2| as a constant number in our asymptotic analysis.
 Our first theorem provides an upper bound for the complexity of the CYCLE-DIVISOR problem. This is the

 main result. Theorems 3, 4 and 6, as well as the solution to Neyman's problem in repeated games, involve the
 use of Theorem 1.

 Theorem 1. There exists a deterministic finite automaton with 20(v/,llog") states such that, for any input a e
 t(-n\ the automaton halts in 2(n + ^/nlog«) steps outputting a number k that divides p(a), and ifk< >Jn logn,
 then k = p(a).

 The next theorem shows that the CYCLE-LENGTH problem is strictly harder than the CYCLE-DIVISOR
 problem.

 Theorem 2. The deterministic TIME x SPACE complexity of CYCLE-LENGTH is 0(n2).

 Randomization, however, can speed up the solution. For a fixed size m, a probabilistic finite automaton with
 m states is a random variable that assumes values in the class of deterministic finite automata of m states.

 Theorem 3. There exists a probabilistic finite automaton with 20(^"log") states that finds the exact cycle
 length in (4 + o(l))n steps with probability greater than 1 — 1/n.

 Finally, we show that the lower bound provided by Theorem 2 is tight up to a constant factor.

 Theorem 4. For every 0 < L < 1 there exists a deterministic finite automaton with 20<"l) states that finds
 the exact cycle length in O(n/L) steps.

 3. Proofs. We begin with two simple observations that refer to an arbitrary finite alphabet 2.

 Claim 1. The number of elements in 2'-"' is less than 2|2|".

 Proof.

 |2(-n)| = U 2W
 k= 1

 n n

 <Ei2wi=Ei2r=^_(i2r-i). □ k= 1 k=1

 Claim 2. For any finite alphabet 2, the map a i-> (al,..., a2n), from 2(£"' to 22", is injective.

 Proof. Suppose a, b are in 2(-n) and (a,,..., a2n) = (bx,..., b2n). Let 1 < k < n. If a ^2(i), then there
 exists 1 <i <n such that a, f al+k ; so bt f bi+k\ so b f 2W. Similarly, if b f 2(i', then a $ 2(t); so p(a) = p(b).
 Since (ax,..., ap(a]) = (bu bp(b]), a = b. □
 We are now ready to prove Theorem 1.

 Proof of Theorem 1. Let m = [-Jnlog«]. For every input sequence a = (al)f=[e 2(-K), we define a set of
 positive integers T0(a) by

 T0(a) = {t>2m: (a,_2m+xpref2(£m)},
 where "pref X" denotes the set of all finite prefixes of sequences in X. Let

 t0(a) = I min r0(a) if T0(a) ± 0,
 oo otherwise.

 We use T0 and t0 for T0(a) and t0(a) when it causes no confusion.
 Note that T0(a) is a p(a)-periodic set. Namely, t e T0(a) iff t+p(a) € T0(a), for every t > 2m. Since p(a) < n,

 we have either t0(a) = oo or f0(a) < n + 2m. Note, too, that t0(a) is a stopping time, namely, the question of
 whether t < t0(a) can be answered by looking at ax,..., a, or not.
 We describe an automaton (2, S, /, H, N, g). The states are partitioned into two disjoint sets S = V,Ù,S2.

 The states in 5, are visited during time t < t0, and the states in S2 are visited during time t>t0. Given an input
 sequence a, we shall first describe the state visited at any time t, st, as a function of (a,,..., a,), and then
 argue that s, is, indeed, a function of s,_, and a,.

 Before time tQ. Define the set of states 5, as follows:

 5, = {(a,,..., a,) e pref 2(Sn): 0 < t < 2n, W = 2m,..., t (a,,_2m+1,..., a,,) e pref 2(-m)}.

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 528 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS

 Note that the set of states S] consists of all the possible histories that may occur before time t0(a) and no later
 than time 2n, for any input a.

 The initial state, st, is the empty history. The terminal states in S,, Sx fl H, are the histories of length 2n in
 5,, 5, n£2". For t < min{r0, 2n + 1}, s, = (ax,..., a,) (here we use that t0 is a stopping time). Obviously, s, is
 a function of and a,. For s € St DH, s = (a,,..., a2n) 6 pref 2(Sn). By Claim 2, (a,,..., a2n) determines
 a, as a e 2(£n). We define g(s) = p(a), and (for completeness only) f{s) = s.

 It remains to claim that |S, | = 20(^"logn). We shall prove the following inequality:

 |5,| <2/î|£|2mrn2"/m. (1)

 To see this, consider an element (a,,..., a,) e Let / = [t/m\. Let kx,..., kl_] < m be integers such that
 (am(i_1)+1,..., am(l+l)) € pref Sa). Note that k, together with (a,,..., ami) determines (a,,..., am(i+ l}); there
 fore the entire sequence (ax,..., a,) is determined by the following data:

 • t,

 • Ü j,..., cim,

 • &lm+\ » * * * '

 • k j, . • • 9 ki_ j.

 Counting the number of possible values for each data item concludes (1).

 Time t0 until 2n + 2m. The set of states visited during time t > t0, S2, is defined by

 {m(/+1) j (b{,..., b,) e {0,1}52": ^2 for every 0 < i < [l/m] 1,
 t=mi+1 1

 S2 = S2m X S2m X B.

 A straightforward calculation shows that |S2| = 20(v/"'og").
 Assume t0 < oo. Recall that this means that t0 < n + 2m. We would like to describe st, for t > t0, as a function
 of the input sequence (a,)™=v Consider the following stationary coding of the input sequence:

 1 if (<2(_2m+l > • • • > &t) (^(0-2m+l > • • • ' ®J0)>
 0 otherwise.

 Note that1 there are at least m "zeros" between any two "ones" in (fi,)JLp therefore (b2m,..., b2n+2m_,) e B.
 For t0<t<2n + 2m, s, is defined by

 St ((at0-2m+l> • • • » at0)'

 (at—2m+l » • • • ' ai)<

 (b2m,.. .,b,)).

 Such a definition allows the automaton to compute the next bit, in the transition from time t to t+ 1. Since
 s, is a function of (a,,..., a,), the transition from time t0 — 1 to t0 is also well defined.

 As a stationary coding of (ö,)^, p(b) divides p(a). Since p(b) < n the entire sequence (bt)^=l can be
 deduced from b2m,..., b2n+2m_,. At time 2n + 2m— 1 the automaton outputs p(b). As mentioned, the sparseness
 of (b,)^=x guarantees that p(b) > m. □

 The proof of Theorem 2 relies on a diagonal argument, called the "fooling set," commonly used in the theory
 of communication complexity. See, for example, Kushilevitz and Nisan [3, p. 10]. The proof reduces the well
 studied string equality problem to the CYCLE-LENGTH problem. Consequently, the well-known SPACE x
 TIME lower bound for string equality applies here. For completeness, we present a self-contained proof.

 Proof of Theorem 2. Assume by negation that there exists an automaton with 2s states that solves CYCLE
 LENGTH in T steps, and that S T < (1/16)«2. Choose a prime number n/A <p< n/2. Consider inputs of the
 form x, x,..., where x e 2''. Any such input yields a sequence of states of the automaton, .v,,..., Syj/p], where
 Sj is the state of the automaton at time pj. By the pigeonhole principle, there must be two inputs x^y that yield
 the same sequence of states sx,..., therefore the sequence x, y, x, y,..., also yields s,, s2,.... This is
 a contradiction2 since the cycle length of x, x,..., differs from the cycle length of x, y, x, y □

 1 A (finite) sequence can overlap with itself by a shift of I places iff it is in pref 2(,). This brilliant argument was suggested by Prof.
 Benjamin Weiss.

 2W.l.o.g., the output is given by the state at time T since we may assume that once the automaton visits a terminal state it stays there
 forever.

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS 529

 In the next proof we use the Rabin-Karp (Karp and Rabin [2]) hash function. Although any other hash function
 could be applied here, the Rabin-Karp hash function has the advantage that it can be computed incrementally.
 This fact simplifies the proof significantly.

 Proof of Theorem 3. Assume 2 = {0,1,..., |S| - 1}. Let a e 2(Sn). Let m = [Jn log n]. Apply Theo
 rem 1 to find a number k that divides p(a), and if k < m, then k = p(a). This can be done with 2°b/"log"> states
 in 2(n + m) steps. If k < m, output k. If k > m, let p be a random prime number, chosen uniformly from the

 set of prime numbers between 2 and n3. For t = 1,2,..., let b, =]T;=1 akt+l\X\k~l. Let ct be the element of
 {1,..., p} congruent to b, modulo p.

 The3 mapping (akt+l,..., ak(t+Vj) c, can be computed incrementally according to the rule

 c'i — + akt+i mod p,

 where c° — 0 and c, = cf. Since c\ and c, assume values in a set of at most n3 elements and [n/k] =
 O(^fnjlogn), the sequence c,,..., c2[„/(t] can be learned with 20(v,"'og"' states in 2n steps.

 The number b, encodes akt+i,..., ak(t+])\ therefore p(a) = kp(b). Obviously, p(c) | p(b) and p(b) < [n/k]\
 therefore p(c) can be deduced from c,,..., c2[n/jt]. The automaton outputs kp(c).

 In the event that V t, s[bt ^ bs -> c, ^ cj, we also have p(b) | p(c), and hence p(c) = p(b), and kp(c) =
 p(a). It remains to estimate the probability of this event. The prime numbers theorem4 and the fact that any
 integer x > 2 has less than log(jc) distinct prime divisors ensures that if b, ^ bs, then Pr(b, = bs mod p) =
 0(n~3(logn)2). Since 5 and t range between 1 and [n/k], Pr(Vr, s[b, ^ bs ->• c, ^ cs]) = 1 - 0(n~2logrc). □

 Proof of Theorem 4. Let a € 2(-n) be an input sequence. Let m — \-Jn log«]. Apply Theorem 1 to find a
 number k that divides p(a). If k < m, output k. Let us assume that k>m and describe, for each possible value
 of k, an automaton whose initial state is the state where the automaton of Theorem 1 halts.

 For a set A = {a,,..., a,} c {1,..., k}, consider the 2'-valued sequence bA, defined by (bA)i = akt+a . Note
 that kp(b= p(a) and for every A, B c {1,..., k},

 p(bAUB) = lcm(p(fiA), p(bB)).

 Let I = [£L]. Choose Al,..., A^L-1-| C {1,..., k}, such that U, A = {1,... A} and |A,| = /, for every i. Let
 ri = k[n/k]. In the first 2n' steps the automaton learns the sequence bA>. This can be done since p(bA') < n'/k,
 and the number of states required is 20<nl>. Assume that at time 2n'i the automaton has learned p(bA'IJ"JJA').
 In the next 2n' steps it learns bAl+] and computes lcm(p(i>A|IJ U'4'), p(bA,~1)) = p(fiA|U'"JA,>1). In doing so, the
 automaton computes p(a) = kp(bafter 2n'|"L-1] steps. □

 4. Minimum distortion functions. Minimum distortion functions play a role in rate-distortion theory, a
 branch of information theory (see Cover and Thomas [1, Ch. 10]). In this section we present an application of
 Theorem 1 to the implementation of minimum distortion functions through finite automata.

 4.1. General framework. We describe the general framework of minimum distortion functions. Let (Y, d)
 be a metric space, /: Y -* Y a function, and X a finite subset of Y. The distortion of / on X is defined by

 8x(f) = \\d(x,f(x))xeX\\,

 for some norm on IR'Y (which has to be specified). The rate of / on X is defined by

 log I/« I
 Rx(f) =

 log M

 For a fixed rate R, the infimum of 8x(f) over all functions / whose rate on X is at most R defines the
 distortion-rate function.

 Now let {X„}^=1 be a sequence of finite subsets of Y. The distortion-rate function for a fixed rate R related
 to this sequence, which with abuse of notation we denote by just 8(R), is defined by

 8(R) — liminf inf 8X (/).
 n-> oo f:Y-*Y n

 Rx„(f)<R

 ' This is the Rabin-Karp hash function. See Karp and Rabin [2].

 'We only use the fact that the number of primes up to n is ft(n/logn).

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 530 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS

 We say that a class % of sequences of functions from Y to Y (equivalently, functions from Y x N to Y)
 obtains the distortion bound on {Xn}f=] at rate R >0, if there exist sequences of functions {/„: Y —» T}£L, € ç€,

 such that RXn{fn) 5 R and
 lim sup ^(/J <8(R).

 n—ïoo

 4.2. Implementation through finite automata. We now turn to discuss a special case of the general frame
 work. The metric space is the set of periodic sequences of bits £(<oc) = IJ*=1 2 = {0, 1}, equipped with the
 Hamming metric

 d(a,b) = lim -j-|{l<«<N: an^bn}\. N-+00 yv

 We consider two distortion variants defined with different norms. The "worst-case distortion" uses the || •
 norm, and the "average distortion" uses the (normalized) || • ||] norm. Formally, for a function /: £^<oo) -» 2(<oc)
 and a finite set X C 2'<oo), we define the worst-case distortion of / on X by

 Sx(f) = ma\d(x,f(x)),
 xeX

 and the average distortion of / on X by

 £>x(/) =]4-E^(x>/M)
 \A\ X€X

 We consider two sequences of finite sets {2(k)}^=1 and {2(-n)}^=1. It is shown below that the distortion
 rate function remains the same for any one of the considered sequences of finite sets and distortion variants.
 Neyman [4] has shown that the class of 2fn) invariant functions that can be implemented through deterministic

 finite automata with 2R" states, halting in O(n) steps, obtains the distortion bound on {X'",}^=l at rate R, for
 every R > 0, with respect to worst-case distortion. It is also shown in Neyman [4] that, by enlarging the class
 of automata to those that halt in nlogn/o(l) steps, the same distortion bound is obtained on the larger sets
 {£(<n)}, hut only with respect to average distortion. In Theorem 6 we show that the former class of functions
 (linear time automata) obtains the distortion bound on {2l-n)}^=1 with respect to worst-case distortion.

 We prepare the ground for the formal statement of Theorem 6. Throughout this section we consider automata
 whose output domain is 2(<oo). For such an automaton si and an input sequence a, we denote the output of si
 given a by si(a). We denote the number of states in si by \si\. We use the notation 8n, 8<n, and Dn for
 52(<„), and D2<„), respectively.

 Shannon's entropy is the following function:

 H(8) = —Slog2(S) -(1-8) log2(l - 8),
 for 0 < 8 < 1.

 The distortion-rate function 8(R) (in any one of the considered settings) will later be shown to be the smallest
 solution of the equation

 H(8) = l-R,
 for 0 < R < 1. At the moment let us consider the above as the definition of 8(R).

 The next proposition says that 8(R) is the (worst-case) distortion-rate function for {X("J},)L| and it is obtained
 by 2(n) invariant functions.

 Proposition 1. For every 0 < R < 1,

 <5(7?) = lim inf 8„(f) (la)
 n-+oc _^,^(<oo)

 |/(2<">) 152s"

 = lim min 8n(f). (lb)
 n—>oo y; £(")_» 2(n)

 1/(2«) I <2*"

 We can ask ourselves what the automaton complexity of the functions in Proposition 1 is. Neyman [4] has
 shown that these functions can be implemented through deterministic finite automata of the appropriate size that
 halt in linear time.

 Theorem 5 (Neyman [4]). For every 0 < R < 1, there exist deterministic finite automata {sln}^=l satisfying,
 for every n,

 1. aZ„(2(n)) C 2(,,),
 Rn

 3. :/in halts in n steps,
 2. K|<2

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS 531

 and

 8n(sdn) ► 8(R).
 n—>00

 We extend the above theorem to the case where the exact cycle length is unknown.

 Theorem 6. For every 0 < R < 1, there exist deterministic finite automata {s4„]J/=1 satisfying, for every
 m<n,

 1. stf„(2(-m)) c X(Sm),
 2. \sdn\<2R",
 3. :An halts in 4n + l^jn log n steps,

 and

 8<n(sdn) —* 8(R).
 — n-> oo

 4.3. Proofs. Proposition 1 estimates the minimal number of balls needed to cover the «-dimensional
 Hamming space, X(n). The balls of radius 8(R) centered at the points of /(2("') have to cover S(n). The question
 is how many balls of radius 8 are needed to cover X(n\ and the answer is 2(1~W(S,'"+0'").
 This kind of problem often appears in the context of information theory. The only difference from the standard

 theory is the fact that the center of the balls need not lie in X'"1 but rather lies in a larger space, X(<cx>).
 We would like to reduce Proposition 1 to statements about balls centered in X(nJ. To do so we consider the

 average distortion, Dn(f), which is, by definition, a lower bound of 8n(f). Our plan is to prove the following
 chain of inequalities:

 8(R) < liminf min Dn(f)
 n->oo y;x(n) _►£(«)

 |/(2<n>)|<2*"

 (»)

 < liminf inf Djf)
 n-+ oo y .£(«)_*.;£(«»)

 |/(2(">)|<2*n

 (iii)

 < liminf inf 8n(f)
 «—>•00

 1/(2'"') I <2R"

 (iv) (v)
 < lim sup min 8n(f)<8(R).

 oo /:2W^2W
 |/(2(»))|<2«»

 Inequalities (iii) and (iv) are obvious. Inequality (ii) stems from the fact that for every /: X(n) ->■ X(<00\

 °"(f) = I™ avemge = aVerage aVerage
 (6)1,..., r) ie{l, ...,n}

 and for every t e N there exists a (unique) function ft\X(n) -> X(n) that agrees with / in the coordinates
 f + 1,...,/ + n; thus,

 average l{f{a)M = Dn(fi) > ^^min^ Dn(f).
 ie{l, ..., n} |/'(£«)|<2r"

 The inequalities (i) and (v) refer to functions from X("' to X'"' or equivalently to ball coverings of X'"'. Let
 R: [0,1/2] -> [0,1] be the inverse function of 8. That is,

 R(8) = l-H(8).

 By continuity, (i) and (v) are equivalent to the inequalities

 lim inf min
 rt—>00

 ———F c 2(n), average d(a, F) <8

 (v'l

 > lim sup min

 ae2<»)

 legrW

 a')

 >R(8)

 : F c X(n>, max d(a, F) <8
 n aeS«

 for every 0 < 8 < 1/2.
 For the proof of (i') and (v') we will need an estimate of the size of the Hamming ball of radius 8 in X(n),

 ■ß«(8) = Y,o<k<sn (I)- The following asymptotic estimation will suffice (see Cover and Thomas [1, p. 353]):

 lim + log2 Bn (8) — H(8), (2)
 n-> 00 n

 for every 0 < 8 < 1 /2.

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 532 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS

 In the subsequent proofs of (i') and (v') we assume without loss of generality that 0 < 8 < 1/2. The cases
 5 = 0 and 5=1/2 hold trivially.

 Proof of (i'). Let

 Fn(8) e arg mini —^F C 2("\ averag td(a, F) < si.
 I n aeXM I

 Let 0 < e < 1/2 — 8. Choose a e 2(n) uniformly at random. On the one hand, by Markov's inequality,

 Pr(d(a, Fn(8)) > 8 + e) < < 1 - e.
 5 + e

 On the other hand,

 Pr(d(a, Fn(8)) < 5 + e) <

 Combining the above inequalities gives

 1 4 ~ B„(S + e)
 By taking log2 of both sides, dividing it by n, letting n grow infinitely and applying (2), we obtain

 limtaf!2!da?)Ls(S+e).
 n-> 00 n

 The proof is concluded with the observation that the above holds for every e > 0 sufficiently small and the
 function R is continuous. □

 Proof of (v'). Let m„ = |S("'| In \2L(n,\/Bn(8). By (2), it is sufficient to prove the existence of sets Fn(8) c
 X("' of size |F„(5)| < m„ + 1 such that d(a, F„(5)) < 8, for every a G X(n).

 Let jCj,..., jtrm i be independent random variables that take values uniformly in X(n), and let FJ8) =
 {jtp ..., }. It suffices to prove that

 Pr(3a g ï{n)d{a, Fn(8)) > 8) < 1.

 Using the fact that (1 — m~')m < e~' for every m > 1, we have

 Bn(S)\m" 1
 Pr(d(a, Fn(8)> 5)) < 1

 ixwi; is<»>r

 for every a e 2(n). Summing over every a G 2(n) concludes the proofs of (v') and Proposition 1. □

 The first step in the proof of Theorem 6 is a simple generalization of Neyman's theorem. Let Xk „ =
 LW2(,t).

 Lemma 1. For every 0 < R < 1, there exist deterministic finite automata „)*„-! satisfying, for every
 k <n,

 1. sdk „(Xw) C H(lk\ for every 1 < I < [n/k],

 2- kj<2*",
 3. '■Ak n halts in 2n steps,

 and

 ,n k,n-+ oo

 Proof of Theorem 6 Assuming Theorem 1 and Lemma 1. Since the function 8 is continuous, it is suffi
 cient to construct automata {sin} with 2Kn+a("> states.

 We describe :An. Consider an input stream a € X<£"). Use the automaton provided by Theorem 1 to compute
 a number k > *Jnlog n such that lcm(k, p(a)) < n; hence a G Xk n. Proceed with the automaton sdk n provided
 by Lemma 1.
 The running time is at most 2(n + *Jn log n) + 2n. The number of states needed is at most 20(^"log") + n2R",

 counting the states that compute k plus the states of „, for every possible value of k. □

 The proof of Lemma 1 is a simple modification of Neyman's original proof [4, p. 24]. For completeness, we
 present a self-contained proof.

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS 533

 Proof of Lemma 1. For k <n, we shall first describe the function induced by dkn, and then construct the
 automaton itself and claim its properties.

 Consider a sequence of functions {/„: S(n) -> £(n)} provided by Proposition (lb). Denote £<oc = U*=o anc^
 define <p: 2<0° -> 2<0° by
 • <p(0) = 0,
 • <p(x) = (fn(x, x,...),)"=i> f°r every n > 1 and x € 1".

 Let L = min{£, [V«]} and I = \k/L~\. Define kt by kt = [k/l\ + 1 {;<*_/[*/;]}. It should be noted that
 • H \-kt = k, and
 • L/2 < kt < L, for every i.

 For t e Z+, define
 r(f) = min{r eZ+: 31 < i < I s.t. t = kx H \-k{ + r mod k},

 and

 b(t) = max{b < t : 31 < i < I s.t. b = k{-\ F kj mod k}.

 Note that, for every t e Z+,
 • t = b(t) + r(t),
 • r(t) < L,
 • b(t + 1) -b(t) e {0,/cj,... ,k,},
 • b(t + 1) € (b(t), t + 1}.

 We define an operator on infinite sequences:

 A: S00^00,

 A(xu x2. ..) = ((p(xm+l,xbm),<p(xb{,_l)+u ab{t)),...).

 In other words: A(x) is the concatenation of the finite sequences ç(xMt_i)+l,..., t = 1,2,... .
 Now we construct the automaton sikt„ = (£, S, 0, /, H, Xk n, g), such that :Ak n(a) = A(a), for every a e Xkn.

 Since the function S is continuous, it is sufficient to have \sdk n| = 2Rn+o(n\
 The states are finite sequences of bits.

 S = {0} U {(A(a)j,..., A{a)b(t),ab(t)+X,ab(t)+r(t)) : 1 <t< 2 k[n/k], a e Xkn}.

 The initial state is the empty sequence,
 s, = 0.

 The terminal states are the longest sequences in S,

 H = S H l2k^ = {(A(a)i,..., A{a)lk[n/k]) a eXk J.

 The transition function is defined on nonterminal states and input streams in Xk n,

 /(Oh, ■ • •, xt), a) =
 (jCj,..., x,, a), ifr(t+l)>0;

 On • • •. xb(t)> «POi-w+i» •••>*,> a)), if r(t + 1) = 0.

 Note that, for every a e Xk n and 1 < t < 2k[n/k\, the state of the automaton at time t given a, s,(a), is given
 by the expression in the definition of S,

 St(a) = (^(a)l> • ■ • > ^(a)b{t)' ai(t)+l> • • • > ab(t)+r(t))'

 For completeness, we arbitrarily define the transition in the case that the above expression does not yield an
 element of S (it may happen only if either t > k[n/k] or a# Xk „).

 For every a 6 Xk „, the run of the automaton on a halts in the state (A(a)j,..., A(a)2t.[n/Â:]). The operator A
 commutes with the ^-places shift operator. Namely, A(xi ,x2...)t+k = A(xk+i, xk+2,...)„ for every x e S00 and
 t 6N. Therefore, A(£(*m)) C for every m > 1. By Claim 2, the following equation well defines the output
 function on Xk n:

 g(A(a)i,..., A(a)2k[n/k]) = A(a).

 For every input stream a,

 d(a, A(a)) <maxd(x, tp(x)) < sup <5ffl(/J- ► 8(R).
 \<i<l m2L/2 k,n-> oo
 xe2*'

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

 Peretz: Learning Cycle Length Through Finite Automata
 534 Mathematics of Operations Research 38(3), pp. 526-534, ©2013 INFORMS

 Since $ik n(a) — A(a), for every a e Xk n, we have limsupt n 8Xk n{tdkn) < 8(R).

 It remains to verify that |5j = The mapping (jc,,..., xt) h» ((x{,..., xb(t)), , x,)) maps S
 into a product of two sets, Sj x S2, where

 5, = {(A(aU=1 : 0 < t < 2k[n/k\, a € XkJ,

 s2 = us'.
 /=0

 The cardinality of S2 is X!f=o|X|' < 2|S|v/". Consider the alphabet T = [<p(XAl) x x <p(X*')]- The defini
 tion of <p ensures that |T| < 2Rk. The set A(Xk n) maps into therefore |5"21 < (2n + 1)|T(—| <
 2fin+log2 n+3 |—]

 5. Game theoretic background. In this section we discuss the relevance of our results to the study of
 repeated games with finite automata.

 Neyman [4] studies repeated two-person zero-sum games where each player is restricted to strategies that can
 be implemented through finite automata whose size is commonly known. In particular, he focuses on the case
 where one of the players is oblivious. An oblivious automaton with n states is equivalent to a periodic sequence
 whose cycle length is at most n. Neyman shows that if player 1 is oblivious and the game is repeated often
 enough, the asymptotic value of the game is given by a function n(logn2/"i)> where nl is the number of states
 in player i's automata.

 Neyman constructs an automaton for player 2. In the first stage the automaton probabilistically learns the exact
 cycle length. To succeed with probability 1 — e, Neyman's automaton requires C(e)n log/? steps of computation.
 In the second stage the automaton uses the cycle length to devise5 a number 1 <<C k < n, such that k is a
 multiple of the cycle length; i.e., the input is /.--periodic. Using the multiple of the cycle length, the automaton

 deterministically computes a "best reply" sequence in O(n) (actually k) steps.
 Theorem 6 improves Neyman's result (in the special case of the matching pennies game) by showing that

 the asymptotic value can be obtained using a deterministic automaton (pure strategy), guaranteeing that the
 play enters a cycle within O(n) steps. The first stage in Neyman's construction is replaced by the automaton
 of Theorem 1. The second stage is modified so as to replace the requirement that k is divisible by the cycle
 length by the weaker requirement that the least common multiple of k and the cycle length is at most n. The
 requirement that k 1 remains.

 Neyman's function v is a generalization of the distortion-rate function, 8, described in §4. Proposition 1 says
 that 8(R) is the asymptotic value of a repeated matching pennies game in which player 1 chooses a sequence
 a e 1ln] and player 2 chooses a function /: X("' —> X'"' whose image contains at most 2R" points. For a general
 finite two-person zero-sum game, the asymptotic value is given by v(R). By appropriately replacing 8(R) with
 v(R) in §4, one can essentially recover and extend the results of [4], showing that a deterministic automaton of
 2Rn states can guarantee a payoff of at most v(R) +o(l), and at the same time make sure that the play enters a
 loop in the first (4 + o(1))n steps against any (< n)-periodic sequence of actions of player 1.

 Acknowledgments. The author thanks Professor Benjamin Weiss for his significant contribution to the proof of
 Theorem 1; see Footnote 1. The author would also like to thank Professor Michael O. Rabin for a fruitful conversation,
 Professor Eilon Solan for his comments, Professor Ehud Lehrer, and last, but not least. Professor Abraham Neyman for many

 helpful comments. This work is based on the author's Ph.D. Thesis done at the Center for the Study of Rationality, Hebrew
 University. It was supported in part by the Israel Science Foundation [Grant #212/09] and by the Google Inter-university
 center for Electronic Markets and Auctions and by the European Research Council under the European Community's Seventh

 Framework Programme (FPT/2007-2013)/[ERC Grant Agreement #249159].

 References

 [1] Cover TM, Thomas JA (2006) Elements of Information Theory, 2nd ed. (Wiley Interscience, New York).
 [2] Karp RM, Rabin MO (1987) Efficient randomized pattern-matching algorithms. IBM J. Res. Development 31(2):249-260.
 [3] Kushilevitz E, Nisan N (1997) Communication Complexity (Cambridge University Press, New York).
 [4] Neyman A (2008) Learning effectiveness and memory size. Discussion Paper 476, Center for the Study of Rationality, Hebrew Univer

 sity, Jerusalem. http://ideas.repec.Org/p/huj/dispap/dp476.html.

 5 In Neyman's construction, k is at least n/2, but any lower bound that diverges to infinity as n grows would do. This is what "1 <& k"
 means.

This content downloaded from 132.71.75.27 on Sun, 25 Oct 2020 14:13:44 UTC
All use subject to https://about.jstor.org/terms

	Contents
	p. 526
	p. 527
	p. 528
	p. 529
	p. 530
	p. 531
	p. 532
	p. 533
	p. 534

	Issue Table of Contents
	MATHEMATICS OF OPERATIONS RESEARCH, Vol. 38, No. 3 (August 2013) pp. 393-616
	Front Matter
	External Risk Measures and Basel Accords [pp. 393-417]
	Inverse Polynomial Optimization [pp. 418-436]
	Consistency of Vanishingly Smooth Fictitious Play [pp. 437-450]
	The Clarke Generalized Gradient for Functions Whose Epigraph Has Positive Reach [pp. 451-468]
	Closed Queueing Networks Under Congestion: Nonbottleneck Independence and Bottleneck Convergence [pp. 469-491]
	A Cantor Set of Games with No Shift-Homogeneous Equilibrium Selection [pp. 492-503]
	Steady-State Analysis for Multiserver Queues Under Size Interval Task Assignment in the Quality-Driven Regime [pp. 504-525]
	Learning Cycle Length Through Finite Automata [pp. 526-534]
	Approximate Linear Programming for Average Cost MDPs [pp. 535-544]
	Confidence Regions for Stochastic Variational Inequalities [pp. 545-568]
	An Exact Duality Theory for Semidefinite Programming Based on Sums of Squares [pp. 569-590]
	Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations [pp. 591-616]
	Back Matter

