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Abstract: Entropy plays a significant role in the study of games and economic behaviour in several
ways. A decision maker faced with an n-fold repetition of a decision-making problem needs to apply
strategies that become increasingly complex as n increases. When several players are involved in
selecting strategies in interactive games, bounds on the memories and cognitive capacities of the
players can affect possible outcomes. A player who can recall only the last k periods of history is said
to have bounded recall of capacity k. We present here a brief survey of results of games played by
players with different bounded recall capacities, in particular those indicating surprisingly strong
relations between memory and entropy in the study of the min-max values of repeated games with
bounded recall. In addition, we consider uses of entropy in measuring the value of information of
noisy signal structures, also known as experiments. These are represented by stochastic matrices,
with the rows representing states of the world and the columns possible signals. The classic ordering
of experiments, due to David Blackwell and based on decision-making criteria, is a partial ordering,
which has led to attempts to extend this ordering to a total ordering. If a decision maker has a prior
distribution over the states, receipt of a signal yields a posterior. The difference between the entropy
of a prior and the expected entropy of the set of possible posteriors has been proposed as a natural
extension of the Blackwell ordering. We survey this alongside the theory of rational inattention,
which posits that, since individuals have limited attention, they do not always follow every single
piece of economic news in planning their economic behaviour. By modelling attention limits as finite
channel capacity in the sense of Shannon, economists have developed a theory that explains a range
of observed economic behavioural phenomena well.
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1. Introduction: The Exam Example

We recently taught a course on the usage of information theory in game theory. It did not take
long for the students to get to the main point; on the first day of classes they asked us:

what do we really need to know in order to receive a first class grade?

Stunned by their directness, we tried to elude the matter by giving them all sorts of evasive replies
but still they insisted, so eventually we gave up and bluntly told them the truth:

There will be a multiple-choice examination comprised of thirty questions, with a choice of
four possible answers (only one of which will be correct) for each question. That is what you
really need to know!

...oh, and here is the list of correct answers:

a b d c b b c a b d a b d b a d b a b d b d b c a b d b a b.

After a pause (and after erasing the list of correct answers from the board), we continued
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Okay, now that we’re on the same page, can we start? Well, then... please close all your
notebooks and electronic devices. The exam begins now!

Obviously, most of our students would not have done very well had we really given them the
exam at that point, even though we had revealed all of the information they needed in order to receive
perfect marks! That is probably because they were not ready, and therefore could not process the
information they were given sufficiently quickly. Taking pity on them, we decided to give them a
second chance. This time, we warned them in advance what was going to happen, namely, that we
were about to repeat the same scenario again. We would announce the correct answers and then they
would take the exam, but they would be allowed enough time to prepare strategies before the correct
answers were revealed.

What were the outcomes of the experiment? Different students succeeded differently in the
‘exam’, perhaps in part because they differed in their memory capacities and in part because they
applied different strategies for recalling the information regarding the correct answers.

Asking what can or cannot be done given one’s cognitive abilities, or merely how to model this
situation, led us to the true lesson of Week 1 of the course. The whole purpose of the experiment was to
introduce a model of decision making that would be used throughout the course. That model, which
is described in Section 2.1 below, is simple enough to be solved analytically, yet also rich enough to
demonstrate the use of information theory in decision theory (which can also be termed ‘one-player
game theory’) as well as to facilitate the analysis of more complicated models that were throughout
the course. These models will be outlined in Section 2 next.

2. Bounded Rationality and Coding Theory

2.1. A Simple Decision Making Model

We start with some standard definitions used in decision theory. A decision making problem consists
of three components:

(i) a finite set S of (all possible) states of the world,
(ii) a finite set A of (all possible) actions,
(iii) a utility function u : S× A→ R.

A single question in the above exam example can be modelled as follows: S = A = {a, b, c, d} is
the set of all possible answers. The state is the correct answer and the action is the student’s answer.
The utility function is

u(s, a) =

{
1 if s = a,

0 if s 6= a.

To model an exam of thirty questions one needs a notion of a repeated problem. The utility
function of the n-fold repetition of the problem un : Sn × An → R is defined as

un(~s,~a) =
1
n

n

∑
i=1

u(si, ai),

where~s = (s1, . . . , sn) and~a = (a1, . . . , an).
A (pure) strategy in the n-fold repetition is a mapping σn : Sn → An. The worth of a strategy is the

utility it guarantees (in the worst case)

v(σn) = min
~s∈Sn

un(~s, σn(~s)).
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We would like to capture the idea of cognitive capacity in the framework of our model. A rather
simple (one may say “simplistic”) yet useful way to do so is to consider the cardinality of the image of
strategies. The (image-size) complexity of a strategy is defined as

comp(σn) = |σ(Sn)|.

The (k, n)-value of a decision making problem u is defined as

Val(u, k, n) = max{v(σn) : comp(σn) ≤ k}.

In game-theoretic terms (Here, we refer to u as a two-person zero-sum game between players
who choose actions in A and S respectively. A formal definition of a two-person zero-sum game is
given in Section 2.4), Val(u, k, n) is the pure max-min value of the n-fold repetition of u restricted to
strategies whose image-size is at most k.

Considering the exam example, it is not hard to see that for k ≤ 3, Val(u, k, n) = 0. Indeed, for any
three sequences of actions, there is a sequence that differs from each one of the three in any position.
For k = 4, the decision make can ensure the utility of 1

4 by repeating a single action throughout, the
action that matches the most frequent state. How well can the decision maker do with k = 5, or
k = 100, or k = n2? Theorem 1 below estimates Val(u, k, n) as a function of the ratio log k

n . In particular,
k polynomial in n is not much better than k = |S|. In order to do better than that, k needs to be
exponential in n.

Before we provide the general estimate, let us first analyse the exam example through an
information-theoretic lens. Given n and k an optimal strategy is a choice of k points in the Hamming
space An, such that the balls of (normalised) radius Val(u, n, k) around these points cover the entire
space. Coding theory tells us that we can choose such balls to be “almost” pairwise disjoint, and so
estimating Val(u, n, k) boils down to estimating the size of a Hamming ball of a give radius.

Our estimate of the image-size value is analogous to Shannon’s channel capacity. In order to
describe the estimate, consider the following two-player game between nature and the decision maker
(DM) parameterised by a non-negative real number h. The game is played in two stages. In Stage 1
nature chooses a probability distribution over the states of the world p(s). In Stage 2, DM chooses, for
every possible state s, a conditional distribution p(a|s) over the set of actions. The moves of nature
and DM induce a joint distribution p = p(s, a) = p(s)p(a|s) over S× A. DM’s choice is subject to the
restriction that the mutual information of the state and the action (with respect to p) is bounded by h.
The joint distribution over states and actions induces a distribution over utilities. The goal of nature is
to minimise the expected utility and the goal of DM is to maximise it. The value of this game (i.e., the
unique equilibrium payoff) is denoted v(u, h). Formally,

v(u, h) = min
p(s)

max
p(a|s):

Ip(s;a)≤h

Ep u(s, a),

where p(s) ranges in ∆(S), p(a|s) ranges in (∆(A))S, p = p(s, a) = p(s)p(a|s) and ∆(X) denotes the
set of all probability measures on the finite set X.

The following theorem is analogous to Shannon’s noisy-channel coding theorem.

Theorem 1. DM cannot do better than v(u, log k
n ), but can do better than v(u, log k

n )− ε, for any ε > 0 and k
large enough. Namely,

0 ≤ v
(

u, log k
n

)
−Val(u, k, n)→ 0,

as k→ ∞ (uniformly in n).

The proof of Theorem 1 is outlined in Section 2.2 below.
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Randomisation helps?

Remark 1. What happens if DM is allowed to randomise? In the exam example with k = 1, by randomising
uniformly between the four pure constant-action strategies, a mixed strategy guarantees an expected utility
of 1

4 , whereas any pure strategy guarantees 0 utility (Val(u, k, n) = 0, for k ≤ 3). So, for some values
of k, randomisation helps. Nevertheless, denoting the randomised (k, n)-value by Val′(u, k, n), one has that
Val(u, k, n) ≤ Val′(u, k, n) ≤ v(u, log k

n ), for any u, k and n; therefore for large values of k and n, randomisation
makes only a negligible difference.

2.2. Neyman–Okada Lemma

In a sequence of papers, Neyman and Okada [1–3] developed a methodology for analysing
repeated games with bounded memory. A key idea of theirs is captured in a simple potent lemma.
Even though the proof of Theorem 1 does not require the full generality of the Neyman-Okada Lemma,
we take this proof as an opportunity to demonstrate a utilisation of the lemma.

Lemma 1 (Neyman–Okada). Let x1, . . . , xm, y1, . . . , ym be finite random variables and let y0 be a random
variable such that each yi is a function of y0, x1, . . . , xi−1. Suppose that t is a random variable that distributes
uniformly in {1, . . . , m} independently of y0, x1, . . . , xm, y1, . . . , ym. Then,

I(xt; yt) ≤ H(xt)−
1
m

H(x1, . . . , xm) +
1
m

I(y0; x1, . . . , xm).

Proof.

I(xt; yt)− H(xt) = −H(xt|yt) ≤ −H(xt|yt, t) = H(xt)−
1
m

m

∑
i=1

H(xi|yi)

≤ − 1
m

m

∑
i=1

H(xi|yi, xi−1, . . . , x1, y0) = −
1
m

m

∑
i=1

H(xi|xi−1, . . . , x1, y0)

= − 1
m

H(x1, . . . , xm|y0) = −
1
m

H(x1, . . . , xm) +
1
m

I(y0; x1, . . . , xm).

The Neyman–Okada Lemma provides an upper bound for the amount of inter-dependence
between xt and yt (measured by mutual information) as a sum of two terms: H(xt)− 1

m H(x1, . . . , xm)

and 1
m I(y0; x1, . . . , xm). The first term depends only on ~x = (x1, . . . , xm); it measures how close ~x is

from being a sequence of i.i.d. random variables. The second term measures the amount of information
that y0 has on ~x. The second term can be bounded from above by the entropy of y0, which is a quantity
that depends only on y0. Thus, the lemma bounds the interdependence between xt and yt by the sum
of two terms, one of which depends only on ~x and the other only on y0. Of special interest is the case
where x1, . . . , xm are i.i.d. and y0 has small support. In this case we have

I(xt; yt) ≤
1
m

log(| supp(y0)|). (1)

Proof of Theorem 1. In one direction, we prove the stronger statement of Remark 1, that is, we show
that Val′(u, k, n) ≤ v(u, log k

n ), for any u, k and n. Let p ∈ ∆(S) be a minimiser of the expression that
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defines v(u, log k
n ). Let pn ∈ ∆(Sn) be the n-fold product of p with itself. Let Σ(k, n) = {σn : σn : Sn →

An and |σn(Sn)| ≤ k}. Since, by Von Neumann’s min-max theorem,

Val′(u, k, n) = max
σ′n∈∆(Σ(k,n))

min
~s∈Sn

Eσn∼σ′n un(~s, σn(~s))

= min
s′∈∆(Sn)

max
σn∈Σ(k,n)

E~s∼s′ un(~s, σn(~s)),

it is sufficient to show that E~s∼pn un(~s, σn(~s)) ≤ v(u, log k
n ), for every σn ∈ Σ(k, n).

We apply the Neyman–Okada Lemma with (x1, . . . , xn) ∼ pn, y0 = (y1, . . . , yn) = σn(xn), and t
uniformly distributed in {1, . . . , n} independently of the other random variables. By Inequality 1 and,
since | supp(y0)| ≤ k, we have

I(xt; yt) ≤
log k

n
.

Let q(s, a) ∈ ∆(S× A) be the joint distribution of (xt, yt). The proof is concluded by

E~s∼pn un(~s, σn(~s)) = E u(xt, yt) = Eq u(s, a)

≤ max
q(s,a):

q(s)=p,
Iq(s;a)≤h

Eq u(s, a) = min
p′

max
q(s,a):

q(s)=p′ ,
Iq(s;a)≤h

Eq u(s, a)

= v
(

u,
log k

n

)
.

2.3. Refinements of the Simple Model

In this section we present more restrictive (and realistic) measures of complexity than the
image size. Surprisingly, the conclusion of Theorem 1 will hold even with respect to the more
restrictive models.

Image size is the number of different reactions a person (strategy) may have to different stimuli.
Having different reactions to different stimuli means that the person necessarily distinguishes between
the stimuli, that is, image size measures the number of different classes of stimuli that can be
distinguished de facto. In reality, however, some pairs (or sets) of inputs are harder to distinguish than
others. Alas, the image-size complexity measure is too coarse to make this distinction.

Let us try to capture the idea of bounded cognitive capacity more realistically. Image-size
complexity assumes that the input is given in one piece. In reality, we read the input bit-by-bit (say, left
to right) and process it sequentially. We need to maintain a cognitive image of the input as we process
it. By the time we finish reading the input, we reach a certain cognitive image in our mind from which
we form a reaction.

The formal model that corresponds to the above description is that of a finite automaton (a.k.a.
Kripke structure). A finite automaton consists of a finite set of states, an initial state (one of the states)
and a transition function that maps each pair of states and input letter to a state. One way to turn
a finite automaton into a strategy, is to specify a mapping from the states to outputs (sequences of
actions). The automaton-size complexity of a strategy is the minimal number of states needed in order to
implement it through a finite automaton.

Clearly, the automaton-size complexity of any strategy is not smaller than its image-size
complexity. Nevertheless, the corresponding value notions are asymptotically equal. The logic behind
this is that an asymptotically optimal strategy of image size k can be simulated by an automaton of
roughly the same size as follows: the input is read in small chunks; each input chunk is temporarily
memorised; then, an optimal reaction to that chunk is figured out (with respect to the ratio (log k)/n);
the temporary memory is discarded while retaining only the concise reaction; then, the next chunk is
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processed in the same fashion and so on. At the end, the output of the automaton is the concatenation
of all the reactions. Choosing the lengths of chunks much larger than 1 and much smaller than n
ensures that the value is asymptotically guaranteed, and the number of additional states required
(beyond k) is negligible in the exponential scale.

One may argue that this proposed model of automaton complexity is still not realistic, since
assuming that any state can be associated with an arbitrary output sequence under-counts the true
cognitive capacity required to implement the strategy. To answer such a critique, one may modify the
model slightly as follows. Suppose each state of the automaton is associated with only one output
action (rather than a sequence of n actions). As the automaton runs over the input, it generates an
output according to states visited. The input is fed into the automaton twice in tandem. At each round
a score (in utility units) is obtained as the function u of the input and output of that round. The final
normalised utility is the average score in rounds n + 1 through 2n. In particular, the output in the first
n stages does not count towards the final score.

The respective value of the modified automaton model is still asymptotically equal to the image-size
value. To see that, one can count the number of addition states needed in order to translate an
automaton that outputs an entire sequence of actions into one that outputs one action at a time. It is
sufficient to show that the size of the latter automaton is not bigger than n2 times the size of the former,
which is a negligible difference on the exponential scale. Such a translation can be done as follows.
In the first phase, rounds 1 to n, each state is coupled with a clock that keeps track of the calendar
time in order to detect the transition to the second phase, rounds n + 1 to n. In the second phase, the
automaton runs obliviously (i.e., ignoring the input) while outputting the sequence prescribed by
the simulated automaton. Each one of the phases requires at most n states per state of the original
automaton; hence the coupling of all these states multiplies the automaton size by n2 at most.

2.4. Playing with Finite Automata

In a survey paper on repeated games, Aumann [4] introduced finite automata as a model of
bounded rationality. We will present a special case of Aumann’s model, for the case of two-person
zero-sum repeated games.

We begin with a few standard game-theoretic definitions. A two-person zero-sum game G =

〈A = A1 × A2, u : A→ R〉 consists of the following components:

• a set of two players {1, 2},
• finite sets of actions A1 and A2 of Players 1 and 2 respectively,
• a payoff function u : A = A1 × A2 → R (that 2 pays 1).

An action profile is an element of A = A1 × A2. A history is a finite sequence of action profiles,
that is, an element of A<∞ =

⋃∞
t=0 At. A (pure reduced) strategy for player i (i = 1, 2) is a function

σi : A<∞
−i → Ai. (This is a tolerable deviation from the standard definition of a strategy, which would

be a function from A<∞ to Ai. The standard game-theoretic notation “−i” refers to the player(s) other
than i, that is, 2− i.) The set of all strategies for player i is denoted Σi. A strategy profile is an element
of Σ1 × Σ2. A strategy profile (σ1, σ2) induces a play~a ∈ A∞ defined recursively by ai

1 = σi(∅) and
ai

t+1 = σi(a1, . . . , at).
A strategy σi and a history h = (h1, . . . , ht) ∈ At induce a continuation strategy σi

|h ∈ Σi,
defined by

σi
|h(a−i

1 , . . . , a−i
k ) = σ−i(h−i

1 , . . . , h−i
t , a−i

1 , . . . , a−i
k ).

Note that the definition of σi
|h ignores the actions of player i along the history h. In particular, h need

not be consistent with σi.
A strategy σi is said to have finite memory if it only has finitely many continuations, and the

cardinality of its set of continuations is called the memory size complexity of σi, that is, the cardinality



Entropy 2020, 22, 157 7 of 20

of the set {σi
|h : h ∈ A<∞}. The set of strategies of player i whose memory size is at most k is denoted

Σi(k).
Let G be a finite two-person zero-sum game G, k1, k2 ∈ N and T ∈ N∪ {∞}. The T-fold repeated

version of G where each player i is restricted to strategies with ki memory size is denoted GT(k1, k2),
that is, GT(k1, k2) is a finite two-person zero-sum game with action sets Σi(ki), i = 1, 2 and a payoff
function uT : Σ1(k1)× Σ2(k2)→ R defined as follows: for strategies σi ∈ Σi(ki), i = 1, 2, that induces
a play a1, a2, . . .,

uT(σ
1, σ2) =

1
T

T

∑
t=1

u(at), (T < ∞)

u∞(σ1, σ2) = lim
T→∞

uT(σ
1, σ2).

The above limit exists since the play must enter a loop after at most k1 × k2 periods.

Remark 2. Memory- and automaton-size complexities are often used inter-changeably in the literature.
The reason for this is that a finite-memory strategy for player i can be implemented through a finite automaton
whose input and output alphabets are A−i and Ai, respectively. Furthermore, the memory-size complexity of a
strategy is the size of the smallest automaton that implements it (with respect to the modified automaton model).
See Section 3 in Reference [5].

The (mixed strategy) max-min value of the game GT(k1, k2) has been a natural subject of
investigation since the introduction of the model in the early 1980s. Ben-Porath [6] showed that

as long as limn→∞
ki(n)

k−i(n) = 0, i = 1, 2, limn→∞ Val′G∞(k1(n), k2(n)) = Val′G. Neyman [5] then

showed that limk→∞ Val′G∞(k, exp(Ck)) = ValG, for sufficiently large C. In general, characterising
the (asymptotic) value of GT(k1, k2) remains an open problem. Interesting particular cases include the
following theorems.

Problem 1. It is not known what the values of G∞(k, exp(ck)) and Gck log k(k, ∞) are, for an arbitrary (small)
constant c > 0.

Neyman [3] took a step towards a solution of Problem 1 that generalises Ben-Porath’s result.
An oblivious strategy is a strategy which ignores the actions of the other player, that is, it plays a
certain sequence of actions regardless of what the other player is doing. Let GT(k1, k2

obl) be the game
derived from GT(k1, k2) by further restricting Player 2 to oblivious strategies. Namely, Player 2 is
restricted to playing sequences of actions that enter a loop of length ` ≤ k2 after `0 ≤ k2 − ` periods.
That is, Player 2 plays sequences of the form abbbb . . ., where a ∈ A`0

2 and b ∈ A`
2, ` ∈ {1, . . . , k2},

`0 ∈ {0, . . . , k2 − `}.

Theorem 2 (Neyman 2008 [3]). For every stage game G = 〈A, u〉, k1, k2 ∈ N and T ∈ N∪ {∞},

Val′GT(k1, k2
obl) ≤ v

(
u;

log k1

k2

)
,

and

ValG∞(k1, k2
obl) ≥ v

(
u,

log k1

k2

)
− ε,

for every ε > 0 as long as k1 is large enough.

Proof outlines. The first part follows from Neyman–Okada’s lemma. Take p ∈ ∆(A2) that attains the

maximum in the definition of v(u, log k1

k2 ). Player 2 plays a random k2-periodic sequence (a1
t )

∞
t=1 such
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that any k2 consecutive elements are independent p distributed. Let σ1 ∈ Σ1(k1) be Player 1’s (best)
response. Divide the duration of the game into epochs of length k2. If T is finite and not divisible

by k2 then the first epoch will be shorter than k2. Clearly, an expected payoff of at most v(u, log k1

k2 )

is attained during the first epoch. Let us look at any other epoch which is of length k2. Let h be the
history of play before the beginning of the epoch and a|h|+1, . . . , a|h|+k2 the play during the epoch.
Apply Neyman–Okada’s lemma with xi = a2

|h|+i, y0 = σ1
|h and yi = a1

|h|+i, i = 1, . . . , k2. The proof

follows from Inequality (1), since σ1 has at most k1 different continuations.
The second part of the theorem is similar to the analysis of automaton-size complexity in

Section 2.3, where Player 1 plays the role of the decision maker and Player 2 is Nature. The only
difference is that here, the exact length of the period is not known; it can vary strategically between
1 and k2. It turns out that the exact period length can be learnt using a small number of states
(sub-exponential in k2) which concludes the proof.

The second part of Theorem 2 refers to the infinitely repeated game, that is, T = ∞. One might
wonder whether the same statement extends to finite values of T and, if so, to what extent. It turns
out that the direct answer to this question is that T = ω(k2) is a sufficient and necessary condition.
Generally, T cannot be O(k2), since Player 2 can always play an optimal strategy during the first k2

stages of the game.
A more interesting question to ask is how long it takes until Player 1 starts to receive the

guaranteed payoff v
(

u, log k1

k2

)
− ε. That is, consider a payoff function that discounts the first T

periods, and takes into account the payoffs in any time interval T + 1 through T + k, for k ≥ k2. How
large need T be to secure the guaranteed payoff? Peretz [7] showed that T ≥ 5k2 is sufficient.

Remark 3. Learning the period length of a stream of input bits using finite memory is an interesting problem
in its own right. Formally, the problem can be stated as follows—the input is an infinite periodic steam of bits
(or letters in a given finite alphabet) with period length at most n. The output is the period length. Reference [8]
found a probabilistic algorithm that runs in TIME 2n and SPACE O((log n)2) (equivalently, automaton-size
nO(log n)). A deterministic algorithm has a TIME×SPACE trade-off of Ω(n2) ([7]). Thus, finding the period
length in sub-linear SPACE (sub-exponential automaton-size) takes super linear TIME. However, in order
to device the automaton for Player 1 in the proof of Theorem 2, it is sufficient to find a large number that
divides the period length, and the latter problem is solvable in TIME 2n and SPACE O(

√
n log n), as shown in

Reference [7].

3. Bounded Recall and High Entropy

In addition to the model of finite automata described in Section 2.4, Aumann [4] proposed another
model of bounded memory called bounded recall. The model we describe in this note is slightly different
from Aumann’s original model. Aumann defined bounded recall strategies as strategies that do not
observe one’s own actions and rather only look at the other players’ actions. We refer to the more
commonly studied definition that allows bounded recall to monitor all of the players.

The idea is simple. A finite game is played repeatedly. A player with capacity k recalls only the
last k periods of history. Different players may have different recall capacities. The result is again a
finite game, but much larger than the one-stage game. The number of k-recall strategies grows double
exponentially in k. Interesting game-theoretic quantities such as equilibrium payoffs and pure/mixed
max-min/min-max levels are challenging to calculate due to the immense number of strategies.

Although our understanding of bounded recall games is far from being complete, it is better
than our understanding of bounded automaton size games. Here, we do have a few estimates for the
value of the game. As the research progresses, it is becoming ever clearer that memory and entropy
are related.



Entropy 2020, 22, 157 9 of 20

We turn now to describe the model of bounded recall starting with two-person zero-sum games.
Let G = 〈A = A1 × A2, u : A → R〉 be a finite (one-stage) two-person zero-sum game. A k-recall
strategy for player i is a mapping σi : A<∞ → Ai that satisfies

σi(a1, . . . , at) = σi(at−k+1, . . . , at),

for every t ≥ k and a1, . . . , at ∈ A.
The set of k-recall strategies for player i is denoted Σi[k]. The T-fold repetition of G where each

player i is restricted to ki-recall strategies is denoted GT [k1, k2]. Further restricting Player 1 to oblivious
strategies yields the game GT [k1

obl , k2].

Remark 4. Bounded recall can be viewed as a special case of bounded memory. Strictly speaking, their definitions
need to be slightly modified in order to make such a comparison. The domain of a (k-recall) strategy is defined as
A<∞ rather than A<∞

−i as in the definition of a reduced strategy that was used for the definition of memory-size
in Section 2.4. Other than that difference, a k-recall strategy can be viewed as a strategy with memory size |A|k,
since it can be implemented through a finite automaton whose state is the history of the last k action profiles.
The other direction does not hold, that is, a bounded memory strategy need not have bounded recall capacity.
In particular, the “state” of a bounded recall strategy is observable by the other player, whereas the state of a
bounded memory strategy is not. Even though bounded recall can be viewed as a special case of bounded memory,
results in one model do not translate automatically to results in the other model, since restricting both players to
subsets of their strategies may result in changing the value of the game in either direction, up or down.

The mixed value of GT [k1, k2] is estimated as a function of log k2

k1 (assuming without loss of
generality that k1 ≤ k2). The function ν : R→ R can be described as the max-min value of a two-stage
game parameterised by a real number h. In the first stage, Player 1 (the maximiser) chooses a mixed
action p ∈ ∆(A1) under the restriction that H(p) ≥ h or H(p) = 0. In the second stage, Player 2
(the minimiser) responds with an action a2 ∈ A2. The max-min value of that game is ν(h). Formally,
the function ν is defined by

ν(h) = max
p∈∆(A1):

H(p)≥h or
H(p)=0

min
a2∈A2

Ep(a1) u(a1, a2).

Recall that we denote the mixed (min-max or max-min) value of a two-person zero-sum game G
by Val′G. We have the following asymptotic estimate.

Theorem 3 ([9]). For every ε > 0, there exists k0 ∈ N such that for any k0 ≤ k1 ≤ k2 ≤ T,

ν

(
log k2

k1 + ε

)
− ε ≤ Val′GT [k1

obl , k2] ≤ Val′GT [k1, k2] ≤ ν

(
log k2

k1 − ε

)
+ ε.

The proof of Theorem 3 relies heavily on a characterisation of the entropy of Bernoulli shifts that
might be of independent interest. The entropy is characterised in terms of the length of a cycle that can
be implemented through oblivious bounded recall strategies. The set of periodic sequences that can be
implemented thorough oblivious k-recall strategies is denoted

A[k] = {ā ∈ AZ : (at, . . . , at+k−1) = (as, . . . , as+k−1)⇒ at+k = as+k ∀s, t ∈ Z}.

The set of n-periodic (two sided) infinite sequences over A is denoted A(n) ⊂ AZ. For ā ∈
AN, the element of A(n) that identifies with ā on the first n elements is denoted ā(n) =

. . . , a1, a2, . . . , an, a1, a2, . . . , an, . . ..
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Theorem 4. Let X̄ = X1, X2, . . . be a sequence of i.i.d. random variables that take values in a finite set A.

sup

h : lim
k→∞

log P
(

X̄(bexp(hk)c) ∈ A[k]
)

exp(hk)
= 0

 = H(Xi).

Problem 2. We wonder whether and how Theorem 4 extends to other ergodic processes.

The easier part of Theorem 4 is showing that the supremum is not greater than the entropy. To this
end, one can utilise two claims. The first claim is that the empirical frequency of X̄(n) converges in
probability to the distribution of Xi exponentially fast. The second is the following claim.

Claim 1. For any k, n and ā ∈ A[k] ∩ A(n), n ≤ exp(H(emp(ā))).

Proof. Let t be a random variable that distributes uniformly in {1, . . . , n}. Let Y1, . . . , Yn be random
variables defined by Yi = at+i. Consider the random variable Y = (Y1 . . . , Yk). Since ā ∈ A[k] ∩ A(n),
Y is uniformly distributed in a set of size n; therefore H(Y) = log(n). The distribution of each Yi is
emp(ā); therefore H(Y) ≤ H(Y1) + · · ·+ H(Yk) = H(emp(ā))k.

Remark 5. The history behind Theorem 3 is as follows. Lehrer [10] proved two special cases: the case of log ki

kj

converging to 0, namely, if limn→∞
log k1(n)

k2(n) = limn→∞
log k2(n)

k1(n) = 0, then limn→∞ Val′G∞[k1(n), k2(n)] =

limn→∞ Val′G∞[k1
obl(n), k2(n)] = Val′G; and the case of log k2

k1 being sufficiently large, namely, there exists a

number L > 0 (that depends on G) such that if limn→∞
log k2(n)

k1(n) > L, then limn→∞Val′G∞[k1(n), k2(n)] =
ValG.

Neyman and Okada [2] extended Lehrer’s result by finding two numbers 0 < O < N < L (depending

on G), such that (asymptotically) if log k2

k1 < O, then Val′G∞[k1
obl , k2] ≥ Val′G− o(1) and if log k2

k1 > N, then
Val′G∞[k1, k2] = ValG + o(1).

3.1. More than Two Players

From two-person games one may proceed to study three-person games. The quantity that we
consider is the mixed min-max value, a.k.a. the individually rational level. This quantity is important
since it is an ingredient in the construction of equilibrium strategies.

For the sake of exposition, we define a three-person game G = 〈A = A1 × A2 × A3, u : A→ R〉
similarly to our definition of a two-person zero-sum game. We think of u as the payoff of Player 1.
We disregard the payoffs of the other players (since we consider the min-max value of player 1 only).
The mixed min-max value (of Player 1) is defined by

Val′G = min
(p,q)∈∆(A2)×∆(A3)

max
a1∈A1

Ep(a2)×q(a3) u(a1, a2, a3).

The correlated min-max value (of Player 1) is defined by

Val′′G = min
p∈∆(A2×A3)

max
a1∈A1

Ep(a2,a3) u(a1, a2, a3).

The game GT [k1, k2, k3] is defined as the T-fold repetition of G where each player i is restricted to
ki-recall strategies. Our holy grail is the question

Val′GT [k1, k2, k3] =?

The answer is not known even in the symmetric case where all the players have the same recall capacity.
To pinpoint the problem, one may focus on a very specific game.
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Problem 3. Consider the three-person Matching Pennies Game G = 〈A = {0, 1} × {0, 1} × {0, 1}, 1−
1{a1=a2=a3}〉.

lim
k→∞

Val′G∞[k, k, k] =?

and does the limit exist?

What is known about this problem? From the analysis of two-person games (e.g., Reference [10]
or Theorem 3) one can infer that for every three-person game G and T ≥ k,

Val′′G− o(1) ≤ Val′GT [k, k, k] ≤ Val′G + o(1).

The first inequality follows from strengthening Players 2 and 3 by allowing them to cooperate as if
they were one player. The second inequality follows from weakening 2 and 3 by restricting them
oblivious strategies.

But where does the truth lie? Is it closer to min-max value of the one stage game, or is it closer to
the correlated min-max value?

Remark 6. Historically, following Reference [10], researchers were tempted to believe that it is closer to the
uncorrelated value. The researchers’ belief was based on the intuitive assumption that since Player 1 can observe
the states of 2 and 3, they should not be able to share any secret between them without Player 1 noticing and,
therefore, they could not correlate their strategies against Player 1.

Bavly and Neyman [11] were the first to challenge the above intuition. They introduced a fourth player,
who is much stronger than the other players but whose actions are irrelevant for the payoff. In their modified
model, they showed that the min-max value of the repeated game converges to the correlated min-max value of
the one-stage game. Their work motivated the search for a counterexample, a game for which the min-max value
of the repeated game is close to the correlated min-max value of the one-stage game.

The following theorem shows that in some games the min-max value of the repeated game is
close to the correlated min-max value of the one-stage game.

Theorem 5. ([12]) For every three-person game G and every C, ε > 0, by cloning any one of the actions of
either Player 2 or 3 sufficiently many times, we obtain a game Ĝ in which

Val′Ĝ∞[Ck, k, k] ≤ Val′′Ĝ + ε,

for any k sufficiently large.

A following converse theorem says that for any fixed game G, there exists C sufficiently large
so that the min-max value of the repeated game is arbitrarily close to the min-max value of the
one-stage game.

Theorem 6 ([13]). For every three-person game G and every C, ε > 0,

Val′GT [Ck, k, k] ≥ Val′G− 2
√

log(|A|)/C− ε,

for any k sufficiently large and any T ≥ k.

Theorem 5 relies on a characterisation of the distributions of actions that Players 2 and 3 can
implement without looking at the actions of Player 1. Note that, since not allowing Players 2 and 3 to
look at Player 1’s actions weakens Players 2 and 3, this characterisation implies an upper bound on the
min-max value. In order to describe the characterisation we consider a game with just two players
(who represent Players 2 and 3 in the original game).
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Definition 1. Let A1, A2 be finite alphabets, p ∈ ∆(A1 × A2) and k1, k2, m : N→ N. We use the notations
of repeated games with bounded recall as if we referred to a two-person game G = 〈A1 × A2, u〉 for some payoff
function u. We say that p is implementable for a duration m through recall capacities k1 and k2 if there exist
σi

n ∈ ∆(Σi[ki(n)] (i = 1, 2, n ∈ N) such that the play induced by σ1
n and σ2

n , a1, a2, . . ., satisfies

• ‖emp(at+1, . . . , at+m)− p‖ = o(1), and
• 1

m H(at+1, . . . , at+m) ≥ H(p)− o(1),

for any t sufficiently large.

The following theorem characterises the implementable distributions.

Theorem 7 ([12]). Given the notation of Definition 1, denote by pi the marginal of p on Ai (i = 1, 2),
and the mutual information that p induces I(p). Suppose limn→∞ m(n) = ∞, and suppose the triple
(k1(n), k2(n), m(n)) is asymptotically proportional to some (κ1, κ2, 1), then a sufficient condition for
implementability is

κ1H(p1) + κ2H(p2) ≥ I(p).

This condition is also necessary, if κ1 = κ2.

4. Entropy in Economics

4.1. Value of Information

4.1.1. Experiments

Making decisions when the only information-gathering tools available are noisy signal sets is
an unavoidable aspect of life. Examples are not difficult to adduce. In a bank run situation, one may
be inclined to withdraw one’s funds from a bank if there are rumours that the fundamentals of the
bank are weakening, but how is one to ascertain whether the rumours are true? One could rely on
several alternative information sources, such as official bank spokesperson statements, media reports,
the length of queues at the bank, and additional rumours whispered by neighbours. Each source is
‘noisy’ in the sense of giving certain signals with positive probability no matter what is the true state of
the bank, and it may be unclear which source is to be preferred.

Another example is given by laboratory tests for the diagnosis of an illness; such tests may not
be entirely one hundred percent reliable if they indicate false positives or false negatives. Imagine a
patient exhibiting symptoms that are consistent with three possible diseases, stumping a medical staff
worthy of television’s Dr House. Two medical laboratory tests are available, which turn a chemical
into one of two colours, depending on which disease is the true one. These are exhibited in Figure 1;
for example, in test (a), if the true disease is disease B then the chemical will turn red with probability
0.05 and green with probability 0.95. Unfortunately, no matter what is the true state, and under both
tests, no matter which colour appears there will still remain some uncertainty as to which of A, B, or C
is the true case. Given the choice of conducting only one of these tests, which should the medical staff
choose? Which one is more valuable from the perspective of the information it supplies?

Disease Red Green
A 0.95 0.05
B 0.05 0.95
C 0.50 0.50

(a)

Disease Blue Yellow
A 0.50 0.50
B 0.90 0.10
C 0.10 0.90

(b)

Figure 1. Laboratory tests with false positive and negatives.

To begin answering such questions rigorously, one needs to decide on a criterion for measuring
the value of information provided by ‘noisy signals’. Suppose that Ω is a (finite) set of possible states.
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An experiment (also called an information structure, or signal structure in the literature) over Ω is a
pair (ψ, S) where S is a finite set of signals and ψ = {ψω,s}ω∈Ω, s∈S is a stochastic matrix, with the rows
representing the states and the columns the signals.

It is assumed that every signal s has positive probability under at least one state. This is without
loss of generality; if it does not hold a signal that has zero probability of being received can simply be
removed from the set of signals. When the true state is ω the decision maker receives signal s with
probability ψω,s. The two matrices depicted in Figure 1 satisfy the definition, with the state space being
{A, B, C} in both cases and pairs of colours serving as the signal spaces.

A decision maker with a prior distribution π ∈ ∆(Ω) over the the states can use an experiment
ψ to arrive at a posterior distribution following receipt of a signal in S. In detail, given prior π, the
total probability of seeing s ∈ S under ψ is pπ

ψ(s) = ∑ω∈Ω π(ω)ψω,s. Then the posterior probability
distribution qπ

ψ(· | s) ∈ ∆(Ω) conditional on signal s is calculated by Bayes’ Rule such that for each
state ω ∈ Ω:

qπ
ψ(ω | s) =

π(ω)ψω,s

pπ
ψ(s)

. (2)

Denote the collection of all experiments over Ω by I(Ω). An ordering �O of I(Ω) will be termed
a value of information ordering. The intention is that if ψ1 �O ψ2 then ψ1 has greater value as a source
of information for discovering the true state than ψ2. Many orderings are possible; the challenge is to
identify an ordering that captures our intuition regarding when one experiment truly provides more
informational value than another.

4.1.2. The Blackwell Ordering of Experiments

David Blackwell ([14,15]), in seminal work that has had a significant impact on the literature,
suggested a (partial) ordering of experiments using a decision theoretic criterion. Let (A, u) be a
decision making problem over the state space Ω; that is, the utility function is given as u : Ω× A→ R.
We assume that all decision makers are utility maximisers. Hence if a decision maker knows that the
state of the world is ω ∈ Ω the action chosen will be argmaxa∈Au(ω, a).

If the decision maker cannot observe the state directly but has access to an experiment ψ that
supplies a signal s conditional on the state, the best that the decision maker can do is implement a
policy, by which we mean a mixed strategy conditional on the signal, that is, β(s) ∈ ∆(A). Denote the
collection of all possible policies by B := {β | β : S→ ∆(A)}.

The situation as described now is that there is a mapping ψ : Ω→ S and a mapping β : S→ ∆(A).
Composition of these mappings yields β ◦ ψ : Ω→ ∆(A), where β ◦ ψ(·|ω) denotes the probability of
choosing an action conditional on the true state being ω.

A decision maker with a prior belief π ∈ ∆(Ω) faced with a decision making problem (A, u) can
calculate the expected payoff of a policy β, contingent on information structure ψ, by way of

E(β; π, A, u, ψ) = ∑
ω∈Ω

π(ω)

(
∑

a∈A
u(a, ω)β ◦ ψ(a|ω)

)
,

and then select an optimal policy β̂. The payoff of ψ for decision maker (A, u) with prior π using β̂ is
then given by maxβ∈B E(β; π, A, u, ψ).

Suppose that we wish to remove the dependence on the prior in the above reasoning. For a pair
ψ1, ψ2 ∈ I(Ω) declare that ψ1 is subjectively more informational for decision problem (A, u) than ψ2 if

max
β

E(β; π, A, u, ψ1) ≥ max
β

E(β; π, A, u, ψ2)

for all priors π ∈ ∆(Ω).
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Next, to get an interpersonally objective ordering, define ψ1 to be more Blackwell informative than
ψ2, denoted ψ1 �B ψ2, if ψ1 is subjectively more informational than ψ2 for every possible decision
problem (A, u). This value-of-information ordering �B is the Blackwell ordering.

The nice aspect of the Blackwell ordering is that it is ‘objective’ in the sense that if ψ1 �B ψ2 then
every rational decision maker will agree that ψ1 has greater informational value than ψ2 no matter what
decision making problem is at issue and no matter what prior distribution is assumed. The drawback
to this very strong requirement of ‘objective unanimity’ amongst decision makers is that we pay the
heavy price of working with a very partial ordering (in fact it is only a pre-order). In other words, not
all experiments can be ordered by the Blackwell ordering; given two experiments ψ1 and ψ2 one may
discover that they are incomparable under this ordering. In that case the Blackwell ordering is silent
regarding the question which experiment provides greater value of information.

To see this, let Ω = {A, B, C}, S = {s1, s2}, and let ψ1 be the matrix of Figure 1a, where s1 = Red
and s2 = Green, while ψ2 is the matrix of Figure 1b, where s1 = Blue and s2 = Yellow. Alongside
these, define action set A = {α1, α2} and payoff functions u1 and u2 such that u1(A, α1) = u1(B, α2) =

u2(B, α1) = u2(C, α2) = 1, with payoff zero for all other combinations of states and actions for both u1

and u2. Let p1 = (0.5− ε, 0.5− ε, 2ε) and p2 = (2ε, 0.5− ε, 0.5− ε) be priors over Ω.
Then it is fairly straight-forward to see that, for sufficiently small ε, a decision maker facing the

decision making problem characterised by payoff u1 and prior p1 will prefer ψ1 to ψ2. This is because
in this situation under both ψ1 and ψ2, receiving signal s1 instructs optimally choosing action a1 and
signal s2 instructs optimally choosing a2. Taken together, the optimal expected payoff from ψ1 is higher
than that from ψ2. By similar reasoning, exactly the reverse holds for payoff u2 and prior p2: here, the
optimal expected payoff from ψ2 is higher than that from ψ1. Hence ψ1 and ψ2 are incomparable in the
Blackwell ordering.

4.1.3. Entropy and the Value of Information for Investors

The partiality of the Blackwell ordering has motivated several researchers to seek an extension
of the Blackwell ordering to a total ordering of all experiments. One suggested completion, due to
Cabrales, Gossner, and Serrano [16], relates experiments to entropy, investments, and measures of risk.

Let π ∈ ∆(Ω). Since π is a distribution, one can calculate its entropy H(π) =

∑ω∈Ω π(ω) ln(π(ω)). Next, recall that by Equation (2) each signal s defines a posterior distribution
qπ

ψ(· | s) ∈ ∆(Ω). Each such posterior distribution, in turn, has its own entropy H(qπ
ψ(· | s)). One can

then define from this the weighted mean posterior entropy ∑s∈S pπ
ψ(s)H(qπ

ψ(· | s)), where, as before,
pπ

ψ(s) is the total probability of signal s, given the prior π.
Using these concepts, Reference [16] defines what they term the entropy informativeness of ψ

(relative to prior π) to be the difference between the entropy of the prior and the weighted mean
posterior entropy:

I(ψ, π) := H(π)−∑
s∈S

pπ
ψ(s)H(qπ

ψ(· | s)). (3)

If we attach to entropy the interpretation that it measures uncertainty, a reduction in entropy
corresponds to reduction in uncertainty. Hence I(ψ, π) may be considered a measure of the increase
in information supplied by the experiment ψ relative to the base-line information in the prior π, as
given by the reduction in uncertainty quantified in the difference in entropy measurement expressed
in Equation (3).

It can readily be shown that I(ψ, π) is always a positive real number. Since the real numbers have
a natural ordering, and for fixed π we may regard I(·, π) as mapping each ψ ∈ I to a real number,
it follows immediately that I(·, π) defines a total ordering of experiments. To see further that the
entropy informativeness ordering extends the Blackwell ordering, consider the following economic
interpretation of I(ψ, π) put forth in Reference [16].

Let the set of states of the world Ω be identified with a set of integers K = {1, . . . , k}. From here
on, fix a prior π ∈ ∆(K). In the model, each decision maker is identified with a concave and twice
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continuously differentiable utility function u for money. Every decision maker is also endowed with
an initial wealth level w. Each pairing of u and w determines an Arrow-Pratt coefficient of relative risk
aversion, defined as

ρu(w) = −w
u′′(w)

u′(w)
.

It will further be assumed that all decision makers satisfy the property of having increasing relative risk
aversion (IRRA), which in this context can be taken to mean that ρ is non-decreasing as a function of
w. In Reference [16] it is also assumed that all decision makers are ruin averse, meaning that it always
holds that limw→0+ u(w)→ −∞. The collection of utility functions satisfying all of these properties is
denoted U∗.

An asset is defined to be an element b ∈ R|K|, interpreted as meaning that at each realised state k
the asset b pays bk ∈ R. An asset is a no-arbitrage asset if ∑k π(k)bk ≤ 0. Denote the set of no-arbitrage
assets by B∗; this is the set of investment opportunities presented to the decision makers.

When a decision maker with initial wealth w chooses investment b ∈ B∗ and state k is realised, the
updated wealth becomes w + bk. Since B∗ includes 0K, the vector in R|K| consisting of zeros in every
position, decision makers always have the option of inaction, guaranteeing that they can maintain
wealth w. We do, however, impose the constraint that bankruptcy (the possibility of negative wealth)
is not allowed.An investment b is termed feasible at wealth w when w + bk ≥ 0 in every state k. Denote
by BF

w the set of investment opportunities that are feasible at wealth w.
Just before deciding which investment opportunity to pick, each decision maker is offered the

opportunity to purchase experiment ψ at price µ. The question posed here is what price the decision
maker would be willing to pay for the information supplied by ψ. Note first that the expected utility
of b for a decision maker with utility u, initial wealth w, and prior belief π (without the benefit of the
information supplied by any experiment) is

V(u, w, π) := sup
b∈BF

w

∑
k

π(k)u(w + bk). (4)

Since we have supposed that decision makers are risk averse and that bankruptcy is forbidden,
the optimal choice of Equation (4), absent any additional information, is inaction. Hence,

V(u, w, π) = u(w).

If ψ is made available, then the expected payoff increases to

γ(ψ, u, w, π) := ∑
s∈S

pπ
ψ(s)V(u, w, qπ

ψ(· | s)),

where pπ
ψ(s) is the probability of seeing s and qπ

ψ is the posterior probability distribution over the states
upon receipt of s; in other words, γ(ψ, u, w, π) is the weighted average of the expected utilities of the
posterior distributions, with weighting given by the probabilities of seeing the signals. It follows that
the gain from making use of ψ is

γ(ψ, u, w, π)− u(w),

and that if ψ is offered to be purchased at price µ the the decision maker will accept the offer if

γ(ψ, u, w− µ, π) > u(w),

and reject it otherwise.
Define ψ1 investment dominates ψ2 if for every wealth w and price µ < w, if ψ1 is rejected by all

decision makers with utility u ∈ U∗ then ψ2 is also rejected by all those same decision makers.
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Theorem 8 ([16]). For each prior π, experiment ψ1 investment dominates experiment ψ2 if and only if
I(ψ1, π) ≥ I(ψ2, π).

A sketch of the proof idea for Theorem 8 is as follows. As a first step, Reference [16] shows that the
utility function ln(w) for all wealth levels w is representative for investment dominance in the sense
that ψ1 investment dominates ψ2 if and only if for every w and µ < w a decision maker with the ln
utility function who rejects ψ1 also rejects ψ2. They then show that a decision maker with logarithmic
utility will determine that ψ1 investment dominates ψ2 precisely when the entropy informativeness of
ψ1 dominates that of ψ2, as defined in Equation (3).

It is a corollary of Theorem 8 that if ψ1 is more Blackwell informative than ψ2 then I(ψ1, π) ≥
I(ψ2, π) for all π. This is because ψ1 �B ψ2 implies that no matter what the utility function, the prior,
or the decision making problem, a decision maker using ψ1 can obtain greater expected payoff than
with ψ2; hence ψ1 certainly investment dominates ψ2.

Putting it all together, the Cabrales–Gossner–Serrano entropy ordering is a value of information
ordering of experiments that extends the Blackwell informativeness ordering to a total ordering.
There is, however, one drawback to the entropy ordering. By definition, I(ψ, π) measures the reduction
in entropy from the entropy of the prior π to the expected entropy of the generated posteriors. If a
different prior π′ is used, the entropy reduction measured by I(ψ, π′) may be very different. Does this
mean that the entropy ordering is unavoidably sensitive to the prior being used for this measurement?

Reference [16] answers this question in the affirmative: there are examples in which the choice of
a different prior leads to different orderings of I (although of course all of those different orderings
extend the Blackwell ordering). Even worse, the paper proves that there exists no index that orders
information structures that is both compatible with investment dominance and independent of the
agent’s prior (Cf. [17]). In other words, almost every one of the infinite number of possible priors
defines a different ordering.

4.2. Rational Inattention

In the most ideal presentation of the classical theory of economies composed of perfectly rational
agents, each of whom is a homo economicus, all relevantly available economic information is immediately
known and analysed by all agents, who instantaneously select optimal actions in response to attain
economic equilibria. The implications of such a theory are many; amongst them are that business
cycles are an impossibility, since prices and wages react instantaneously and optimally to changes in
economic conditions and supply and demand. As a result, employment and output always remain at
optimal levels with respect to objective economic fundamentals.

This view is challenged by Keynesian economic theories. One of the features of such theories
is the assertion of ’price stickiness’, which can be presented as an assertion that prices and wages
react with considerable delay to changes in underlying economic fundamentals. Since delays cause
prices and wages to be suboptimal, economies are slow to attain market clearing equilibria and hence
undergo periods of underperformance in contrast to what would be expected by a seamless model of
continuously optimising agents.

An oft-repeated critique of the price stickiness assumption in Keynesian models is that it is
inserted into formal economic models ad hoc, without micro-foundational justification. To contend with
this, several explanations have been proffered in the literature. These include assumptions that agents
may experience signal-extraction difficulties in distinguishing movements in aggregate prices and
wage movements in the specific prices they encounter in transactions. Other theories seek explanations
in models of behavioural deviations from full rationality and in bounded rationality models.

We focus here on the rational inattention model, initiated in a seminal paper due to Christopher
Sims ([18]. (Nearly all of the material presented in this section is taken either from Reference [18]
or from Reference [19].) This model begins with the observation that people react sporadically and
imperfectly to the information they receive. Even individuals who actively read charts on financial
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data often fail to take actions based on all the information they have seen, and typically react only when
data strike them as saliently unusual. In contrast, one would expect fully rational economic agents to
be making fine adjustments to their spending schedules, investment portfolios, and other economic
activities on a continual basis given any received information on changes in market parameters, no
matter the amplitude of the changes.

The explanation given to this by the rational inattention model is that the benefits of continuous
adjustment are slight relative to the extent of attention required to implement them; people have more
important things to think about day to day and moment to moment than the tiny gains they might
attain from continuous monitoring of economic variables. Rational inattention presumes that the
ability of individuals to translate external data into actions is constrained by a finite Shannon channel
capacity inherent to humans for information processing.

To begin modelling this mathematically, recall the definition of I(X, Y), the mutual
information(Not to be confused with the similar notation of Equation (3), which refers to entropy
informativeness in a different context.) between two probability distribution functions X and Y. This is
the difference between the expected value of the log of the joint probability distribution of X and Y
and the sum of the two expected values of the logs of the marginal probability distributions of X and
Y. The mutual information measure is crucial for the development of the concepts related to Shannon
channel capacity.

A channel, in Shannon’s theory, is a description of possible inputs (in terms of probability
distributions) and of conditional distributions of inputs given outputs. The exact distribution of the
inputs, however, may be chosen judiciously. More to the point, if one chooses the distribution of the
inputs to maximise the mutual information between input distribution and output distribution, the
channel is transmitting information at maximal capacity.

The coding theorem states that inputs can be coded in such a way that information can always
be transmitted through the channel with arbitrarily low error rates and arbitrarily close the the
channel capacity transmission rate. This does, however, come with a price: coding almost always
introduces delay.

Suppose our objective is to minimise E[(Y − X)2], where Y is the action to be chosen by the
economic agent and X is a random variable can only be observed through a finite-capacity channel,
with capacity κ. What is the optimal choice for the conditional distribution of Y | X subject to the
requirement that the information flow about X required to generate Y is finite? Formally, supposing
that p(·) is given as the probability density function of X and that we seek the optimal q(·) associated
with Y, the mathematical task is

min
q

{
E[(Y− X)2] =

∫
(y− x)2q(y|x)p(x) dy dx

}
s.t.

∫
q(y|x) dx = 1 for all x

and − E[E[log2 q(Y | X) | X]] + E[log2

∫
q(Y | x)p(x)dx] < κ

Reference [18] then shows that if X is distributed X ∼ N then the optimal form of q is Gaussian
and X and Y are jointly normal. In that case, this is equivalent to observing X with an error.

To take one economic example to which this can relate, consider a permanent income calculation.
The permanent income hypothesis, first proposed by Milton Friedman, postulates that individuals
determine their consumption at each point in time t not only in relation to present wealth at time t but
also taking into consideration expected income in future time periods. This has strong implications for
savings and consumption rates. In particular, it predicts consumption smoothing, spreading out of
spending over time.

In a simple formal model of permanent income calculation, postulate an infinitely-lived agent
who maximises his or her life-time utility from the consumption of a stream of consumption (with
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consumption at time t denoted by Ct). The utility function of consumption is presumed to be u(Ct) =

Ct − 1
2 C2

t .
At the start of each period t, the agent has Wt available from which to consume Ct, leaving Wt−Ct,

which then grows each period in accordance with a gross interest rate R. We may also suppose that
the agent has labour or endowment income available at time t, which is denoted Yt. The utility of
consumption in future periods is discounted at a fixed rate β per time period.

The objective of the agent is

max
{Ct}∞

t=0

E
[ ∞

∑
t=0

βtu(Ct)

]
= max
{Ct}∞

t=0

E
[ ∞

∑
t=0

βt
(

Ct −
1
2

C2
t

)]
s.t. Wt+1 = R(Wt − Ct) + Yt+1.

So far this is a standard permanent income calculation. The text-book solution to the model as
presented up to here is

Ct = βWt + (1− β)Y. (5)

Suppose now that distributions are Gaussian, W0 ∼ N (W, σ2
W), and Yt ∼ N (Y, σ2

Y) i.i.d. for all
t, where W and Y stand for mean values. And to relate it all to rational inattention, suppose that It

denotes the information available at time t, with all variables known at time t measurable with respect
to It. Consistent with previous model assumptions, we suppose that updating from Wt | It−1 to
Wt | It occurs with upper bound channel capacity κ.

Sims [18] shows that under these assumptions the agent will behave as if observing noisy state
measurements; more precisely the consumption sequence {Ct} will satisfy

Ct = βW∗t + (1− β)Y, (6)

where W∗t = Wt + ζt such that ζt is an i.i.d. normal noise factor.
Comparing Equations (5) and (6), the latter adds the noise term ζt that is not present in Equation (5)

and is not inherent to the original variables of the model. The extra noise can have significant
cumulative effects on consumption and savings schedules.

Rational inattention models have been studied in much greater generality than those involving
quadratic objective functions and Gaussian distributions (see References [20–23]). This literature is
too broad to be fully surveyed here; we will provide only a very brief summary of one of its main
implications.

The solutions to the models in the above papers often imply a discrete distribution for agent
actions, even when the external uncertainty is continuously distributed. In the context of product prices,
which is most interesting because of its implications for disputes regarding the ‘stickiness’ of prices, the
results point to prices that jump amongst a finite set of values when they change, which is consistent
with data observations but is not fully explained by models other than rational inattention models.

If price setters who are rationally inattentive adapt to available information only occasionally
and select only from a finite set of possible prices, then price setters are far from the image of agents
who continuously and optimally react to every revelation of economic information. In particular,
their response to monetary policy changes will differ from that postulated in classical rational
expectations models.

5. More on Entropy in Repeated Games

The previous sections depicted a small (and rather biased towards the interest of the authors)
selection of the uses of entropy in game and economic theory. We have not mentioned a few important
research trends to which we would like to provide references for further reading. Repeated zero-some
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games with a limited source randomness were studied by Neyman and Okada [1,24] and later by
Gossner and Vieille [25]. Correlation based on an exogenous source of randomness was studied in
Reference [26]. Valizadeh and Gohari [27] showed how to overcome information leakage in the above
mentioned settings. Another fruitful research direction is the communication game introduced by
Gossner, Hernández, and Neyman [28] which was followed up by, for example, Cuff and Zhao[29],
Larrousse, Lasaulce, and Wigger [30], and Le Treust [31].
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