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We study repeated games in which each player i is restricted to (mixtures of) strategies 
that can recall up to ki stages of history. Characterizing the set of equilibrium payoffs boils 
down to identifying the individually rational level (“punishment level”) of each player.
In contrast to the classic folk theorem, in which players are unrestricted, punishing a 
bounded player may involve correlation between the punishers’ actions. We show that the 
extent of such correlation is at most proportional to the ratio between the recall capacity 
of the punishers and the punishee. Our result extends to a few variations of the model, as 
well as to finite automata.
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1. Introduction

It has long been asserted that in many economic contexts, not all courses of action are feasible (e.g., Simon 1955, 1972). 
Many times it is reasonable to expect simple strategies to be employed, or at least strategies that are not immensely 
complex. The issue is clearly manifest in repeated games, as even a finite repetition gives rise to strategies that one may 
deem unrealistically complex.

In a survey of repeated games with bounded complexity, Kalai (1990) asked, “What are the possible outcomes of strategic 
games if players are restricted to (or choose to) use ‘simple’ strategies?” This question has been considered in many works 
through the years.1 Most past results concern two-person games. With three players or more, we must account for the 
possibility of correlation in a group of players.

In this paper we bound, for each player i, the amount of correlation that the other players can effectively achieve 
“against” i. The bound is formulated in terms of the (average per-stage) amount of correlation between the stage actions 
of the players other than i. This upper bound on correlation implies a lower bound for the equilibrium payoff of each 
player i.
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E-mail addresses: gilad.bavly@gmail.com (G. Bavly), ron.peretz@biu.ac.il (R. Peretz).

1 To name a few notable results, we mention Abreu and Rubinstein (1988), Aumann and Sorin (1989), Neyman (1997), Gossner and Hernández (2003), 
Renault et al. (2007), Neyman and Okada (2009), and Lehrer and Solan (2009).
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The two most common models of bounded complexity in repeated games are finite automata and bounded recall.2 Both 
models involve setting bounds on the memory of the players.3

For clarity’s sake, our presentation here focuses on the simpler model of bounded recall. A pure k-recall strategy is a 
(pure) strategy that relies only on the previous k stages of history. Each player i has a recall capacity ki . In the beginning of 
the game, player i randomly chooses a strategy among the (finite) set of ki -recall strategies. No randomization takes place 
afterwards.

However, we prove our main result, mutatis mutandis, also for finite automata, as well as for some variants of the 
bounded recall model, e.g., behavioral and time-dependent strategies (see Section 5).

No further assumptions are made besides complexity bounds; e.g., there are no external communication devices, and 
monitoring is perfect.

In repeated games with bounded complexity, identifying the individually rational (minmax) levels of the players,4 which 
need not coincide with the individually rational levels of the one-stage game, is an important step in the characterization 
of the equilibrium payoffs (Lehrer 1988, p. 137). That is, in a sufficiently long game, any payoff profile that is feasible and 
above each player’s minmax is close to an approximate equilibrium payoff (or simply to an equilibrium payoff, in games 
with a full dimensional feasible set). Thus, we can henceforth concentrate on the minmax.

The case of two players is well understood (Lehrer 1988, Ben-Porath 1993, Peretz 2012). Little is known about the 
minmax when there are more than two players. The difficulty lies in the possibility of correlation in a group of players. 
Even though the players employ uncorrelated mixed strategies at the beginning of the game, their actions can become 
correlated in the course of the game due to imperfect recall.5

To illustrate our result, let us consider a one-stage three-person Matching Pennies game, in which Player 3’s payoffs are

L R
T -1 0
B 0 0

W

L R
T 0 0
B 0 -1

E

. (1.1)

Player 3’s minmax level is − 1
4 , which is attained when 1 and 2 play

p =
1
4

1
4

1
4

1
4

.

Player 3’s correlated minmax level − 1
2 , attained when 1 and 2 play

c =
1
2 0

0 1
2

. (1.2)

Between these two numbers we define the h-correlated minmax (for any number h ≥ 0) as the minmax where the minimum 
is taken over a pair of actions of players 1 and 2 whose mutual information6 is at most h.

Consider a finitely or infinitely repeated game where the recall capacity of Player 3 is m, and the capacities of players 1 
and 2 are at most k. Our main result establishes that the correlation between 1 and 2 is at most C k

m , where C is proportional 
to the logarithm of the number of pure action profiles in the one-stage game. More precisely, we show that the average 
per-stage mutual information between the actions of 1 and 2, given the history recalled by 3, can be bounded by C k

m . This 
implies that the minmax of Player 3 in this game is at least the convexification of the h-correlated minmax function (of the 
stage game), evaluated at h = C k

m . This, in turn, implies that the minmax of 3 is within D
√

k
m of the one-stage minmax, for 

a constant D .
In particular, if m � k then 1 and 2 cannot correlate against 3; i.e., Player 3’s minmax level is asymptotically (i.e., as the 

recall capacities grow) at least her minmax level in the one-stage game.
Our result extends to game with more than three players (see Section 5.2).

2 These models were introduced by Aumann (1981). Other pioneering works in this area include Neyman (1985), Rubinstein (1986), and Ben-Porath 
(1993) on automata, and Lehrer (1988) on bounded recall.

3 These bounds are not necessarily small, and hence bounded complexity does not imply that strategies are necessarily “simple” in everyday terms.
4 Also known as “punishment levels.”
5 A similar subtlety arises in a related model, three-player games with imperfect monitoring (see, e.g., Gossner and Tomala 2007).
6 Mutual information (see Section 3 for a definition) is a useful measure of correlation between two random variables. Independent actions such as p

above have 0 bits of mutual information, and c has 1 bit of mutual information. Any convex combination of p and c has a fraction of a bit of mutual 
information, which is continuously increasing as the combination moves toward c.
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1.1. Equilibrium payoffs with bounded complexity

Bounded complexity may give rise to new equilibrium outcomes that were not present in the unrestricted repeated game, 
and it may also exclude equilibrium outcomes. The set of equilibrium payoffs would still be folk-theorem-like; i.e., it would 
consist of approximately all feasible payoffs that are above each player’s minmax. The difference from the unrestricted 
repeated game (i.e., the classic folk theorem) is that the minmax under bounded complexity may be different from the 
minmax of the one-stage game.

For example, consider a player who is stronger than the other players, i.e., her recall capacity is larger than that of the 
others. It is not hard to show that if the difference in strength is very large then her minmax is high. This shrinks the set 
of equilibrium payoffs, compared to that set in the classic folk theorem; and conversely for a sufficiently weaker player. 
Moreover, even when all players are of equal strength (i.e., have the same recall capacity), the minmax may drop below the 
one-stage minmax (see Theorem 1.1 below).

Suppose player i is the strongest, with recall capacity m, while the capacity of the other players is at most k (k ≤ m). 
Lehrer (1988) implies that i’s minmax is at least her one-stage correlated minmax. What conditions can guarantee that i’s 
minmax is higher than that?

The only condition known thus far is that there exists an exponential function f , such that if m ≥ f (k) then i’s minmax 
is at least her one-stage (uncorrelated) minmax7 (and moreover, there exists an exponential function g , such that if m ≥
g(k) then i’s minmax is her one-stage minmax in pure actions). On the other hand, Peretz (2013) showed that, perhaps 
surprisingly, for any C ≥ 1 there exists a stage game such that if m ≤ Ck then i’s minmax is close to her one-stage correlated 
minmax.

Theorem 1.1 (Peretz 2013). For every three-player game G and every ε > 0 and every C ∈ N , cloning one of the actions of Player 1 
sufficiently many times yields a game G ′ in which

minmax3 G ′[k,k, Ck] < cor minmax3 G ′ + ε,

for any k large enough.

Our result closes the gap between these two ends. We show that if m is superlinear in k then i’s minmax is asymptoti-
cally at least her one-stage minmax. This superlinearity condition is tight in light of the result of Peretz (2013) mentioned 
above, which shows that no linear relation will do.

Let k′ be the recall capacity of the weakest player. By Lehrer (1988), if m is subexponential in k′ then i’s minmax is 
asymptotically at most her one-stage minmax. Therefore, we know now that if m is superlinear in k and subexponential 
in k′ (in which case one may say that i is “moderately stronger” than the other players) then i’s minmax is asymptotically 
equal to her one-stage minmax.8

2. Model and results

Throughout, a finite three-person game in strategic form is a pair G = 〈A = A1 × A2 × A3, g : A → [0, 1]3〉. Namely, the 
payoffs are normalized to be scaled between 0 and 1. The minmax value of player i ∈ {1,2,3} is defined as

minmaxi G := min
x−i∈∏

j �=i �(A j)
max
ai∈Ai

gi(x−i,ai),

where �(X) denotes the set of probability distributions over a finite set X .
The correlated minmax value (which is equal to the maxmin value) of player i ∈ {1,2,3} is defined as

cor minmaxi G := min
x−i∈�(A−i)

max
ai∈Ai

gi(x−i,ai),

where A−i := ∏
j �=i A j .

We define a range of intermediate values between the minmax value and the correlated minmax values. The h-correlated 
minmax value of player i ∈ {1,2,3} (h ≥ 0) is defined as

cor minmaxi G(h) := min
x−i∈�(A−i):∑

j �=i H(x j)−H(x−i)≤h

max
ai∈Ai

gi(x−i,ai),

7 See Bavly and Neyman (2014, Theorem 2.3).
8 By that, we affirm Conjecture 6.4 in Peretz (2013), as noted by an anonymous referee.
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where H(·) is Shannon’s entropy function.9

The h-correlated minmax value is the value that player i can defend when the other two players are allowed to correlate 
their actions up to level h. It is a continuous non-increasing function of h. For h = 0, it is equal to the (uncorrelated) minmax 
value. For h large enough (e.g., h = min j �=i{ln |A j |}), it reaches its minimum, which is equal to the correlated minmax value.

Our main result uses the convexification of the h-correlated minmax value, defined as follows: for a bounded function 
f : D →R defined on a convex set D (⊂R), the convexification of f is the largest convex function below f . Namely,

(Vex f )(h) := sup{c(h) : c : D →R, c is convex, c(x) ≤ f (x) ∀x ∈ D}.
For T ∈N ∪ {∞}, a (pure) strategy for player i ∈ {1,2,3} in the T -fold repeated game is a function si : A<T → Ai , where 

A<T = ⋃
0≤t<T

At . A probability distribution over strategies is called a mixed strategy. A corresponding random variable (whose 

values are strategies and whose distribution is a mixed strategy) is called a random strategy. The set of all (pure) strategies 
for player i is denoted by �i

T . For a strategy si and a history of play ht = (a1, . . . , at) ∈ At , the continuation strategy given 
ht , denoted by si

|ht
, is the strategy induced by si and ht in the remaining stages of the game, i.e., si

|ht
(a′

t+1, . . . , a
′
t+r) =

si(a1, . . . , at, a′
t+1, . . . , a

′
t+r), for all (a′

t+1, . . . , a
′
t+r) ∈ Ar .

A k-recall strategy for player i is a strategy si ∈ �i∞ that depends only on the last k periods of history. Namely, for any two 
histories of any length ā = (a1, . . . , am−1) and b̄ = (b1, . . . , bn−1), if (am−k, . . . , am−1) = (bn−k, . . . , bn−1) then si(ā) = si(b̄).

For a k-recall strategy si we can also define the continuation strategy given a k-length suffix of history h ∈ Ak , instead of 
a complete history. This is of course well defined, since k-recall implies that for any complete history that ends with h the 
continuation strategy is the same. This includes, in particular, the case where the complete history is h itself. Hence we can 
use the above notation, si

|h , also for a continuation strategy of a k-recall strategy given a suffix.

The (finite) set of k-recall strategies for player i is denoted by �i(k). For natural numbers k1, k2, k3, the undiscounted 
T -fold repeated version of G where each player i is restricted to ki -recall strategies is denoted by G T [k1, k2, k3]. The payoff 
in this game is the average per-stage payoff, for T < ∞, and the limiting average for T = ∞. Throughout, we always arrange 
the players’ order such that k1 ≤ k2 ≤ k3.

Since G T [k1, k2, k3] is a finite game in strategic form, we can write minmaxi G T [k1, k2, k3] to denote i’s mixed-strategy 
minmax level. Our main result is the following theorem.

Theorem 2.1. For every finite three-person game G = 〈A, g〉 and every ε > 0 there exists k0 ∈N such that for every k3 ≥ k2 ≥ k1 ≥ k0

and T ∈N ∪ {∞},

minmax3 G T [k1,k2,k3] ≥ (Vex cor minmax3 G)

(
2 ln |A| · k2

k3

)
− ε

≥ minmax3 G − 2

√
ln |A| · k2

k3
− ε .

By Peretz (2012), if log k3/k1 → 0 then

minmax3 G T [k1,k2,k3] ≤ minmax3 G + o(1).

Therefore, Theorem 2.1 is asymptotically tight in the case where k3 is superlinear in k2 but subexponential in k1. I.e., 
minmax3 G T [k1, k2, k3] is asymptotically equal to minmax3 G in this case.

In Section 5.2 we extend Theorem 2.1 to more than three players (Theorem 5.2).

2.1. Example

To illustrate the difficulties related to correlation, consider a repetition of the three-person Matching Pennies game, de-
picted in (1.1), finitely or infinitely many times. Although the strategy space of the repeated game may be quite complicated, 
3’s minmax level remains − 1

4 , as in the one-stage game. The reason is that conditioned on any finite history, the actions 
of 1 and 2 right after that history are independent; therefore, 3, who observes the history, need only respond to product 
distributions in any period.10

But suppose that the players have bounded recall and, therefore, they do not observe the entire history. Let us say that 
both 1 and 2 have recall capacity k and 3 has recall capacity m. In Peretz (2013) it was shown that (up to an approximation) 

9 Section 3 provides the definitions of Shannon’s entropy and the derived notion of “mutual information.” Here, ∑ j �=i H(x j) − H(x−i) is the mutual 
information between the x j s, j �= i.
10 In other words, although the actions of 1 and 2 may be correlated, they are independent in the eyes of 3 (given her information about the entire 

history).
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1 and 2 can play a 2k-periodic sequence of actions whose period consists of 2k independent repetitions of a correlated action 
profile such as c, depicted in (1.2). Therefore, perhaps surprisingly, even for m larger than k, as long as m < 2k an agent 
who observes only the last m actions of 1 and 2 faces the correlated action c in every period; therefore 3’s best response 
conditioned on the last m actions of 1 and 2 ensures her only − 1

2 (which is 3’s one-stage correlated minmax level).
Yet things turn out to be more complicated, because of course Player 3 observes not just the actions of 1 and 2, but her 

own actions as well. By playing a certain pattern of actions, 3 can “encode” (within her own last m actions) information 
about the past actions of 1 and 2, and use this information to predict the next move of 1 and 2.

Determining the value that 3 can defend in such a way is a delicate matter. Since her current action affects both her 
current stage payoff and her future information, one needs to quantify the amount of information that 3 can encode while 
she maintains a given payoff level. Furthermore, even if we knew this value, it would still not suffice for computing the 
minmax level. The problem is that 1 and 2 observe 3’s actions (as well as their own). They may use this additional infor-
mation to enhance the correlation between their actions. Thus, even if m is larger than k, 3 needs to use her advantageous 
information with care so as not to reveal it to 1 and 2.

Our main technical contribution is to devise and analyze a strategy for 3 that allows her to exploit the limited recall 
capacities of 1 and 2 while not revealing any information that might help 1 and 2 correlate against her.

2.2. A few notes about the proof

What follows is not intended to be a proper “sketch” of the proof, but mainly aims at presenting some of the ideas that 
drive it.

The following observation, of interest in its own right, plays an important role in the proof. Consider two players who 
each choose a mixed k-recall strategy (in particular, their randomization is independent). Although their continuation strate-
gies from some stage t on need not be independent,11 we show that they cannot be too far from it, due to their bounded 
memory.

Suppose Player 3 uses an m-recall strategy. For simplicity, let us think of k as being small compared to m. Our aim, then, 
is to show that 3 can get a payoff that is close to her one-stage minmax.

Fix a pair σ1, σ2 of mixed k-recall strategies of Players 1 and 2. We would like to formulate the above observation so that 
we can show that after time t , Player 3 can get, in expectation, a good average payoff (i.e. close to the one-stage minmax) 
during a block that consists of the following m stages or so.

Let s1 and s2 be the actual strategies of 1 and 2 (i.e., the realization of their strategies, chosen according to the probability 
σ1 ⊗ σ2), and let h ∈ Ak be the last k actions preceding stage t . The triple (s1, s2, h) determines the continuation strategies 
of 1 and 2 in the aforementioned block. We should note that h may be correlated with t (and recall that Player 3 cannot 
condition her actions on the time) and with s1 and s2.

To overcome this difficulty, we will show that Player 3 has a strategy for the block that is good for any contingency, i.e., 
it is good against any h and any kind of correlation between h and (s1, s2) (and, therefore, also any t). For this purpose we 
define an auxiliary game as follows.

The auxiliary game is a zero-sum game between Bob (the maximizer) and Alice (the minimizer). It is conceived by 
imagining the play of the original repeated game during m consecutive stages, starting at some arbitrary point in time t . 
Bob, “representing” 3, chooses a strategy to be played during these m stages against σ1, σ2. However, Alice, representing 1 
and 2, gets to choose what supposedly was h, the k-length history preceding stage t; and she can condition her choice on 
the realization of the strategies of 1 and 2.

We show that the amount of correlation between the resulting artificial “continuation strategies” of 1 and 2 (i.e., the 
continuation after the k-length “memory” h that Alice chooses) is of the order of k. Hence the average per-stage correlation 
between the actions of 1 and 2 is small (since k is small compared to m). This implies that the value of the auxiliary game 
is close to the one-stage minmax of Player 3.

The point of defining the zero-sum auxiliary game is that, by a minmax theorem, there is a mixed optimal strategy ζ ∗
for Bob that guarantees the value against any choice of Alice. In terms of the original game, ζ ∗ is exactly what we wanted: 
one block-strategy for Player 3, which is good for any contingency.

Let us divide the stages of the original game into blocks of length m. Suppose that Player 3 chooses one instance of ζ ∗
and employs it in every block (more precisely, chooses one block-strategy according to the probability ζ ∗ and employs this 
strategy over and over again in every block). Although the blocks are longer than k, the recall capacity of Players 1 and 2, 
it is not clear that this overall strategy will suffice12 against σ1, σ2. On the other hand, if 3 could employ infinitely many 
independent instances of ζ ∗ , then we would be done. However, 3 cannot do this with bounded recall unless you allow for 
behavioral strategies, which we do not. We conclude the proof by showing that it suffices to employ many independent 
instances of ζ ∗ in many consecutive blocks (call this combination of blocks a “super-block”) and then repeat the exact same 
super-block-strategy over and over again, and by showing that Player 3 can approximate such play.

11 For further discussion see Section 4.2.
12 For example, σ1 and σ2 may “keep alive” some information about what happened in the previous block, by playing a specific action or pattern of 

actions every now and then.
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3. Preliminaries

This section presents some information-theoretic notions that are used in the proof.
Shannon’s entropy13 of a discrete random variable x is the following non-negative quantity:

H(x) = −
∑
ξ

P(x = ξ) ln(P(x = ξ)),

where 0 ln 0 = 0 by continuity.
The distribution of x is denoted by p(x). We have

H(x) ≤ ln(|support(p(x))|).
If y is another random variable, the entropy of x given y, defined by the chain rule of entropy H(x|y) = H(x, y) − H(y), 
satisfies

H(x) ≥ H(x|y)

with equality if and only if x and y are independent. The difference I(x; y) = H(x) − H(x|y) is called the mutual information
of x and y. The following identity holds:

I(x; y) = I(y; x) = H(x, y) − H(x|y) − H(y|x).
If z is yet another random variable, then the mutual information of x and y given z is defined by the chain rule of mutual 
information:

I(x; y|z) = I(x, z; y) − I(z; y).

For an event of positive probability A, H(x|A) is the entropy of the random variable x restricted to A defined on the 
induced probability space. Conditional mutual information I(x; y|A) is defined similarly. The latter definitions comply with 
the former ones through

H(x|y) =
∑
η

P(y = η)H(x|y = η),

and

I(x; y|z) =
∑
ζ

P(z = ζ )I(x; y|z = ζ ).

Mutual information is a useful measure of interdependence between a pair of random variables. Another useful measure 
of interdependence is the norm distance between the joint distribution and the product of the two marginal distributions. 
A relation between these measures is given by Pinsker’s inequality:

‖p(x, y) − p(x) ⊗ p(y)‖1 ≤ √
2I(x; y).

3.1. Neyman–Okada lemma

In a sequence of papers, Neyman and Okada (Neyman and Okada 2000, 2009, Neyman 2008) developed a methodology 
for analyzing repeated games with bounded memory. A key idea of theirs is captured in the following lemma whose proof 
appears in Peretz (2012, Lemma 4.2).

Lemma 3.1 (Neyman–Okada). Let x1, . . . , xm, y1, . . . , ym be finite random variables, and let y0 be a random variable such that each 
yi is a function of y0, x1, . . . , xi−1 . Suppose that t is a random variable that distributes uniformly in [m] := {1, . . . ,m} independently 
of y0, x1, . . . , xm, y1, . . . , ym. Then,

I(xt; yt) ≤ H(xt) − 1

m
H(x1, . . . , xm) + 1

m
I(y0; x1, . . . , xm).

13 In the literature, a similar definition using log2 instead of ln is also commonly referred to as “Shannon’s entropy.”
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The interpretation is that x1, . . . , xm is a sequence of actions played by an oblivious player,14 y0 is a random strategy of 
a second player, and y1, . . . , ym are the actions played by the second player.

Of special interest is the case where the oblivious player repeats the same mixed action independently, namely, x1, . . . , xm

are i.i.d. In this case we have

I(xt; yt) ≤ 1

m
I(y0; x1, . . . , xm). (3.1)

4. Proof of Theorem 2.1

The second inequality in Theorem 2.1 is an immediate corollary of Pinsker’s inequality. The payoff function g3 is 
1-Lipschitz w.r.t. the ‖·‖1 norm; therefore, by Pinsker’s inequality,

cor minmax3 G(h) ≥ minmax3 G − √
2h, ∀h ≥ 0,

and the function on the right-hand side is convex.
The main effort is to prove the first inequality of Theorem 2.1. In the proof, for any given pair of mixed strategies σ 1, σ 2

of Players 1 and 2, we describe a strategy σ 3 of Player 3 that yields the required payoff. We divide the stages of the game 
into blocks, and describe σ 3 for each block. At the beginning of a block Player 3 should consider the continuation strategies 
of 1 and 2. An important point is that these continuation strategies are random variables that are a function of the initial 
strategies employed by 1 and 2 and of their memories at the beginning of the block. Generally, the continuation strategies 
of 1 and 2 need not be independent, nor even independent conditional15 on the memories of 1 and 2.

This leads us to define and analyze the following auxiliary game. Afterwards, we will use this analysis to describe σ 3 .

4.1. An auxiliary two-person zero-sum game

For natural numbers k and m, and mixed strategies σ i ∈ �(�i
m+k) (i = 1, 2), we define a two-person zero-sum game 

	σ 1,σ 2,k,m between Alice, who is the minimizer, and Bob, the maximizer (Alice is related to Players 1 and 2 in the original 
game,16 and Bob is related to 3). The strategy space of Alice is the set

X A =
{
ρ ∈ �(�1

m+k × �2
m+k × Ak) : ρ ’s marginal on �1

m+k × �2
m+k is σ 1 ⊗ σ 2

}
.

The strategy space of Bob is XB = �(�3
m).

The strategies of Alice can also be described as follows. A pair of strategies s1 ∈ �1
m+k and s2 ∈ �2

m+k is randomly chosen 
by nature, according to the distribution σ 1 ⊗σ 2. After seeing s1 and s2, Alice chooses a “memory” h ∈ Ak (or, more generally, 
a distribution over Ak).

A pair of strategy realizations r = (s1, s2, h) ∈ �1
m+k × �2

m+k × Ak and z ∈ �3
m induces a play a1, . . . , am of Players 1, 2, 3, 

defined by

ai
t =

{
si(h1, . . . ,hk,a1, . . . ,at−1) for i = 1,2,

z(a1, . . . ,at−1) for i = 3
(4.1)

for any 1 ≤ t ≤ m. That is, we look at an m-fold repeated game, in which Player 3 simply employs the strategy z, and Players 
1 and 2 act as if the actual play was preceded by the history h (in other words, they employ si

|h).
Hence, a pair of strategies ρ ∈ X A and ζ ∈ XB induces a probability measure over plays of length m. The payoff that Alice 

pays Bob is defined by

	σ 1,σ 2,k,m(ρ, ζ ) =Eρ,ζ

⎡
⎣ 1

m

m∑
j=1

g3(a j)

⎤
⎦ . (4.2)

Since the action spaces are convex and compact and the payoff function is bi-linear, the game 	σ 1 ,σ 2,k,m admits a value.

Lemma 4.1. For every three-person game G, natural numbers k and m, and mixed strategies σ 1 ∈ �(�1
k+m) and σ 2 ∈ �(�2

k+m),

Val(	σ 1,σ 2,k,m) ≥ (Vex cor minmax3 G)

(
2k ln |A|

m

)
.

14 An oblivious player is one who ignores the actions of the other players.
15 We elaborate on this point in Section 4.2.
16 We could have required that σ1 and σ2 be k-recall strategies, but it is not needed.
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The rest of this section is devoted to proving Lemma 4.1. Our next lemma states that the convexification of the 
h-correlated minmax value of G is at most the mh-correlated minmax value of the m-fold repetition Gm .

Lemma 4.2. Let s1 and s2 be random strategies that assume values in �1
m and �2

m, respectively. There exists a pure strategy s3 ∈ �3
m

such that the play a1, . . . , am induced by (s1, s2, s3) satisfies

E

[
1

m

m∑
t=1

g3(at)

]
≥ (Vex cor minmax3 G)

(
I(s1; s2)

m

)
.

Proof. The strategy s3 ∈ �3
m myopically best-responds to (s1, s2) on any possible history. Formally, s3 is defined recursively 

as follows. Suppose that s3 is already defined on A<t−1, for some 1 ≤ t < m. Then, s1, s2, and s3 induce a random play 
āt−1 = (a1, . . . , at−1) ∈ At−1 and random actions for 1 and 2 at time t , a1

t and a2
t . We define s3 on At−1 by choosing

s3(ht−1) ∈ arg max
a3∈A3

E[g3(a−3
t ,a3)1{āt−1=ht−1}], ∀ht−1 ∈ At−1.

For every t ∈ [m] and every ht−1 ∈ At−1 for which P(āt−1 = ht−1) > 0, define Y (ht−1) = I(a1
t ; a2

t |āt−1 = ht−1). By the 
definition of s3,

E[g3(at)|āt−1] ≥ cor minmax3 G(Y (āt−1)),

for every t ∈ [m].
Now, take t̂ to be a random variable uniformly distributed in [m] independently of (s1, s2). Let Y = Y (āt̂). Then,

1

m

m∑
t=1

E[g3(at)] =E[g3(at̂)] =E
[
E[g3(at̂)|āt̂−1]

]
≥ E[cor minmax3 G(Y )] ≥ (Vex cor minmax3 G) (E[Y ]) .

Since E[Y ] = 1
m

∑m
t=1 I(a1

t ; a2
t |āt−1), it remains to show that

m∑
t=1

I(a1
t ;a2

t |āt−1) ≤ I(s1; s2).

To this end, we use the inequality17

H(U ) ≤ I(V ; W ) + H(U |V ) + H(U |W )

with U = ām , V = s1, and W = s2, as follows.

m∑
t=1

I(a1
t ;a2

t |āt−1) =
m∑

t=1

H(a1
t ,a2

t |āt−1) −
m∑

t=1

H(a1
t |a2

t , āt−1) −
m∑

t=1

H(a2
t |a1

t , āt−1)

= H(ām) −
m∑

t=1

H(a1
t |a2

t , āt−1) −
m∑

t=1

H(a2
t |a1

t , āt−1)

≤ I(s1; s2) + H(ām|s1) + H(ām|s2) −
m∑

t=1

H(a1
t |a2

t , āt−1) −
m∑

t=1

H(a2
t |a1

t , āt−1)

= I(s1; s2) +
m∑

t=1

[
H(at |s1, āt−1) − H(a2

t |a1
t , āt−1)

]

+
m∑

t=1

[
H(at |s2, āt−1) − H(a1

t |a2
t , āt−1)

]
≤ I(s1; s2),

where the last inequality is explained as follows: a1
t is a function of āt−1 and s1. On the one hand, it implies that 

H(a2
t |s1, ̄at−1) ≤ H(a2

t |a1
t , ̄at−1). On the other hand, combined with the fact that a3

t is a function of āt−1, it implies 
that H(at |s1, ̄at−1) = H(a2

t |s1, ̄at−1). Therefore, H(at |s1, ̄at−1) ≤ H(a2
t |a1

t , ̄at−1), and similarly when switching between 1
and 2. �
17 One can readily verify that H(U ) = I(V ; W ) + H(U |V ) + H(U |W ) − I(V ; W |U ) − H(U |V , W ).
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Proof of Lemma 4.1. Let ρ ∈ X A be any strategy of Alice. Let r = (s1, s2, h) ∈ �1
m+k × �2

m+k × Ak be Alice’s random strategy, 
i.e., a random variable distributed according to ρ .

Let Bob’s response to ρ be the strategy s3 ∈ �3
m given by Lemma 4.2 applied to the continuation strategies (s1

|h, s2
|h). 

Recalling (4.1) and (4.2), the payoff in 	 is the expectation of the average m-stage payoff induced by the three strategies 
s1
|h, s

2
|h, s3. Therefore,

	(ρ, s3) ≥ (Vex cor minmax3 G)

(
I(s1

|h; s2
|h)

m

)
.

By the chain rule of mutual information,

I(s1
|h; s2

|h) ≤ I(s1,h; s2,h) = I(s1; s2,h) + I(h; s2,h|s1) = I(s1; s2) + I(s1;h|s2) + I(h; s2,h|s1) ≤ 2k ln |A| ,

where the last inequality holds since s1 and s2 are independent, and H(h) ≤ k ln |A|. It follows that

	(ρ, s3) ≥ (Vex cor minmax3 G)

(
2k ln |A|

m

)
. �

4.2. The maximizing strategy

We now return to the repeated game of Theorem 2.1. Assume w.l.o.g. that k1 is as large as k2, and denote k = k1 = k2. 
For now let m be roughly equal to k3. We give the exact value of m in Section 4.2.2.

For any pair of mixed strategies σ i ∈ �(�i(k)) (i = 1, 2) we describe a strategy σ 3 ∈ �(�3(m)) that achieves the required 
expected payoff against σ 1 and σ 2. Note that σ 3 is in fact a mixed strategy. Although the existence of a good mixed 
response σ 3 implies the existence of a good pure response s3, our proof does not single out such an s3.

Consider the T -fold repeated game G T [k, k, m]. We assume first that T is either a multiple of m3 or T = ∞. The other 
values of T are treated later. For now, let us just hint that the case of T < m3 is simpler, and that any finite T can be 
divided into T = T1 + T2, where T2 is a multiple of m3 and T1 < m3.

We divide the stages of the repeated game into blocks of size m. For any block, let h ∈ Ak be the last k actions played 
before that block, and consider the random continuation strategies s1

|h and s2
|h . Although s1 and s2 are independent, s1

|h
and s2

|h need not be independent (nor even independent conditional on h or on the memory of Player 3), because there 
may be some interdependence between s1, s2, and h. Player 3, not knowing the time, may not know exactly what this 
interdependence is since the joint distribution of s1, s2, and h may differ from one block to the next. But consider the 
corresponding auxiliary game 	σ 1,σ 2,k,m . The point is that 	, being a zero-sum game, has a (possibly mixed) optimal strategy 
ζ ∗ of Bob that guarantees the value against any strategy in X A , i.e., against any possible distribution of s1, s2, and h with 
the required marginal.

Consider one “instance” of ζ ∗ , namely, a realization of a random variable whose distribution is ζ ∗ . Had Player 3 employed 
this same instance in every block, she can expect to do well in the first block, but later on s1 and s2 might have been able 
to learn something about this instance. On the other hand, 3 cannot play infinitely many independent instances of ζ ∗ , as we 
do not allow 3’s strategy to be behavioral. Nevertheless, we show that it is sufficient that 3 cyclically repeats a long cycle 
(or “super-block”) consisting of many independent instances of ζ ∗ .

Thus, the mixed strategy σ 3 is defined as follows. Let z1, . . . , zm2 be i.i.d. variables taking values in �3
m , with distribution 

ζ ∗ ∈ �(�3
m). In any block Bl = ((l − 1)m + 1, . . . , lm), Player 3 plays according to zl := zl mod m2 .

We examine the play inside any block Bl . Denote the last k periods of play before Bl by hl . Denote the realizations of 
σ 1 and σ 2 by s1 and s2 respectively. Since s1 and s2 are k-recall strategies, the play in Bl is induced by s1

|hl
, s2

|hl
, and zl . 

Furthermore, we only care about how s1 and s2 behave in the first k +m periods. Denote the restriction of each s j to A<k+m

by s′ j ∈ �
j
k+m ( j = 1, 2).

Let us now analyze the average per-stage payoff r3 that Player 3 receives in m2 consecutive blocks, say, B1, B2, . . . , Bm2 . 
The analysis is performed by taking a random variable î uniformly distributed on [m2] independently of s1, s2, s3 and 
estimating the expectation of the average per-stage payoff in Bî .

Let (ρ, ζ ) ∈ �(�1
k+m × �2

k+m × Ak × �3
m) be the joint distribution of (s′ 1, s′ 2, hî, zî), where ρ is the joint distribution of 

(s′ 1, s′ 2, hî) and ζ = ζ ∗ is the distribution of zî . Since ρ is a possible strategy for Alice in the auxiliary game (i.e., ρ ∈ X A ), 
and ζ ∗ is optimal for Bob,

	σ 1,σ 2,k,m(ρ ⊗ ζ ) ≥ Val	σ 1,σ 2,k,m ≥ (Vex cor minmax3 G)

(
2k ln |A|)

.

m
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We regard the games played at each block B1, B2, . . . , Bm2 as stages of an m2-fold repeated meta-game. Recall that r3 is 
the expected average per-stage payoff of the meta-game, and hence it is also the expected payoff in Bî . Since Bob’s payoff 
function in 	σ 1,σ 2,k,m is 1-Lipschitz, by Pinsker’s inequality,

r3 = 	σ 1,σ 2,k,m(ρ, ζ ) ≥ 	σ 1,σ 2,k,m(ρ ⊗ ζ ) −
√

2I(s′ 1, s′ 2,hî; zî).

By the Neyman–Okada lemma (Inequality (3.1)), since each hl is a function of (s′ 1, s′ 2, h1) and z1, . . . , zl−1,

I(s′ 1, s′ 2,hî; zî) ≤ 1

m2
I(s′ 1, s′ 2,h1; z1, . . . zm2)

= 1

m2

(
I(s′ 1, s′ 2; z1, . . . zm2) + I(h1; z1, . . . zm2 |s′ 1, s′ 2)

)

= 1

m2
I(h1; z1, . . . , zm2 |s′ 1, s′ 2) ≤ k ln |A|

m2
≤ ln |A|

k0
.

It follows that

r3 ≥ (Vex cor minmax3 G)

(
2k ln |A|

m

)
− √

2 ln |A|/k0 .

4.2.1. Other values of T
If T is finite and not a multiple of m3, let T = T1 + T2 + T3, where: (i) T1 + T2 < m3, (ii) m3 divides T3, (iii) T1 < m, and 

(iv) m divides T2. In the last T3 stages, σ 3 is defined as above, and the analysis is unaffected.
In the first T1 stages, σ 3 can simply play perfectly against (σ 1, σ 2). By Lemma 4.2, there is a strategy s3 ∈ �3

T1
that 

yields an expected average payoff of at least minmax3 G during these stages, since σ 1 and σ 2 are independent. Therefore, 
a perfect play yields at least that much.

The next T2 stages are divided into blocks of length m, and an independent instance of ζ ∗ is played for each block.18

Formally, let z1, . . . , zT2/m be i.i.d. variables taking values in �3
m , with distribution ζ ∗ . In each block Bl , σ 3 plays according 

to zl . As above, the optimality of ζ ∗ implies that the expected average payoff in each Bl is ≥ (Vex cor minmax3 G)
(

2k ln |A|
m

)
.

Overall, the expected average payoff is at least

(Vex cor minmax3 G)

(
2k ln |A|

m

)
− √

2 ln |A|/k0

in the last T3 stages, and we got a better bound than that for the first T1 + T2 stages.

4.2.2. Final adjustments
Strictly speaking, although the above strategy σ 3 always focuses on one block of length m, it need not be a k3-recall 

strategy. To make sure that it is, we now make small modifications to σ 3, and show that their effect on the expected payoff 
is small.

Since the strategy σ 3 cannot rely on the time t , we will make sure that the strategy always “knows where we are” 
by making it play some predefined actions in some stages. Dividing T into three phases of length T1, T2, and T3 as in 
Section 4.2.1, we note that we need to make sure of three things: knowing the index of the current block in the second 
phase, knowing the index modulo m2 in the third phase, and knowing where a block begins. In the first phase the history 
is shorter than m; therefore, we know exactly where we are.

Assume w.l.o.g. that |A3| ≥ 2. Let γ ∈ A3 be some action of Player 3. Denote a = �√m� and b = �log|A3|(2m2)�. The size 
of a block, m, is taken as the maximal numbers such that k3 ≥ m + max {a,b}.

Every block Bl begins with a + 1 stages in which Player 3 first plays γ , and then plays some fixed action different from 
γ for a stages. Denote this sequence of a + 1 actions by ᾱ. The actions in the following b stages are reserved for encoding 
the value of the “counter” β̄l , which identifies the current phase (second or third) plus the block index (i.e., the absolute 
index in the second phase or the index modulo m2 in the third). Since β̄l can take at most 2m2 different values, b stages 
will suffice.

The choice of m ensures that σ 3 is a k3-recall strategy, since at any point in time we can see, within the previous k3
stages, the last completed ᾱ and the last completed counter.

In the rest of the block we play normally, except that we play the action γ every a stages. This makes sure that we can 
find the ᾱ designating the beginning of a block, because ᾱ contains a consecutive stages without γ .

18 Proving Theorem 2.1 only for small values of T , say T < m3, is significantly simpler and does not need to go through the auxiliary game. Since we 
needed the auxiliary game for general values of T , we might as well utilize it in this part of the proof as well.
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The only modification needed in the proof is to replace the definition of the auxiliary game 	 by that of the game 
	(ᾱ, β̄l, γ ), defined the same except that the strategies of Bob are restricted to playing ᾱ in the first a stages, β̄l in the 
following b stages, and then γ every a stages. Elsewhere, a strategy is free to choose anything, as before.

Otherwise the proof proceeds as above, and the analysis of the “free” stages is unaffected. The payoff in the predeter-
mined stages may of course be low (recall that the payoff is always between 0 and 1). Therefore, in any block we get the 
same average payoff as above, minus at most 1

m ((a + 1) + b + m/a) � 1
m (2

√
m + log|A3|(2m2)).

5. Extensions

In this section we consider a few variations of the model referred to in the previous sections. The reason for choosing 
one specific model and focusing on it through most of the paper is that we find it the most challenging one. We next show 
how the results obtained so far extend to a few variations of the main model quite easily.

We considered repeated games in which the payoff was the undiscounted average of the stage payoffs, or the limiting 
average in the case of infinite repetition. It is easily verified that the asymptotic form of our result still holds for a discounted 
payoff, when the discount rate approaches 0.

Suppose that we allowed Players 1 and 2 to play mixtures of behavioral ki -recall strategies, that is, a mixture of functions 
from Aki to �(Ai). Our result holds in this model too, with σ 3 unaltered (in particular, σ 3 need not toss coins). The 
reason is that the complexity limitations of these players were used in the proof only to make the following assertion: the 
continuation strategy of i at any point in time depends only on the last ki actions. The assertion is true in this model as 
well.

Another plausible variation of the model is to allow strategies to depend not only on the last ki actions, but also on 
calendar time. Here, too, our result holds. The proof of this model is simpler since we only have to consider the instance 
of the auxiliary game played at each block separately (Lemma 4.1). We do not have to worry about Player 3 being able to 
repeat a strategy indefinitely. Note that it is crucial for Player 3 to condition her actions on calendar time. Otherwise, if 
Players 1 and 2 conditioned on time while 3 did not, any fixed (i.e., 0-recall) normal sequence of actions of Players 1 and 2 
would seem random to Player 3.

5.1. Finite automata

Finite automata are another common model of bounded complexity in repeated games. An automaton of player i is a 
tuple A = 〈Z , z0, q, f 〉. Z is a finite set, and its elements are called states of A. z0 ∈ Z is the initial state. q : Z × A−i → Z is 
the transition function. f : Z → Ai is the action function.

A induces a strategy in the repeated game as follows. Let zt ∈ Z denote the state of the automaton at stage t . Before the 
game begins the state is the initial state z0. The transition from one state to the next is determined by the current state 
and the actions of the other players, i.e., zt+1 = q(zt , a−i

t ). In stage t , the strategy plays the action f (zt).
The complexity of a strategy is measured by the size (i.e., the number of states) of the smallest automaton that imple-

ments this strategy. Any m-recall strategy is implementable by an |A|m-automaton (but not vice versa), simply by letting 
each state of the automaton correspond to a different possible recall.

If we allow the strategies of Players 1 and 2 to be implementable by automata of size |A|ki , instead of ki -recall strategies, 
the result still holds, with σ 3 unaltered. The reason is, again, that the continuation strategy of i at any point in time depends 
only on a limited source of information: the last ki actions in the case of bounded recall, or the current state of i’s automaton 
in the case of automata. As the automaton has only |A|ki possible states, we get exactly the same information-theoretic 
inequalities.

On the other hand, since σ 3 is implementable by an automaton of size |A|k3 , we get the following theorem, which is the 
counterpart of Theorem 2.1 for finite automata.

Theorem 5.1. For every finite three-person game G = 〈A, g〉 and every ε > 0 there exists s0 ∈N such that for every s3 ≥ s2 ≥ s1 ≥ s0

and T ∈N ∪ {∞},

minmax3 G T (s1, s2, s3) ≥ (Vex cor minmax3 G)

(
2 ln s2 ln |A|

ln s3

)
− ε,

where G T (s1, s2, s3) denotes the undiscounted T -fold repetition of G, where each player i is restricted to an si-automaton.

We also note that the above argument still holds if we allow for automata with stochastic transitions, i.e., transition 
functions of the form q : Z × A−i → �(Z).

5.2. Many players

In this Section we extend our result on the minmax in a three-player repeated game to a game with any number of 
players. In order to do that, we need to define a notion that extends the notion of mutual information to more than two 
random variables. One such extension is the following.
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The total correlation of a tuple of discrete random variables x1, . . . , xd is defined as

C(x1, . . . , xd) =
d∑

i=1

H(xi) − H(x1, . . . , xd) .

The Kullback–Leibler divergence from p to q (a.k.a. relative entropy; see, e.g., Cover and Thomas 2006, Chapter 2.3), where p
and q are discrete probability distributions, is defined as D K L (p‖q) = ∑

ξ p(ξ) ln p(ξ)
q(ξ)

. The total correlation of x1, . . . , xd also 
equals the divergence from the joint distribution of these variables to the product of their marginal distributions, i.e.,

C(x1, . . . , xd) = D K L ( p(x1, . . . , xd )‖ p(x1) ⊗ . . . ⊗ p(xd) ) . (5.1)

We extend the notion of h-correlated minmax to an n-player game in strategic form 〈N, A, g〉 by

cor minmaxi G(h) := min
x−i∈�(A−i):

C(x−i)≤h

max
ai∈Ai

gi(x−i,ai),

where x−i is regarded as an (n − 1)-tuple. Note that this is in fact the same expression used to define this notion in 
Section 2.

The following theorem is the n-player extension of Theorem 2.1.

Theorem 5.2. For every finite game G = 〈N, A, g〉 and every ε > 0 there exists k0 ∈N such that for every kn ≥ . . .k2 ≥ k1 ≥ k0 and 
T ∈N ∪ {∞},

minmaxn G T [k1, . . . ,kn] ≥ (Vex cor minmaxn G)

(
(n − 1) ln |A| · kn−1

kn

)
− ε

≥ minmaxn G −
√

2(n − 1) ln |A| · kn−1

kn
− ε .

5.2.1. Proof of Theorem 5.2
The conditional total correlation of x1, . . . , xd given z is defined by

C(x1, . . . , xd|z) =
d∑

i=1

H(xi |z) − H(x1, . . . , xd|z) .

Lemma 5.3.

(i) If yi is a function of xi for every 1 ≤ i ≤ d, then
C(x1, . . . , xd) − C(y1, . . . , yd) ≥ C(x1, . . . , xd|y1, . . . , yd).

(ii) Moreover, if yi is a function of z and xi for every 1 ≤ i ≤ d, then
C(x1, . . . , xd|z) − C(y1, . . . , yd|z) ≥ C(x1, . . . , xd|y1, . . . , yd, z).

In particular, C(x1, . . . , xd) ≥ C(y1, . . . , yd) on (i), and C(x1, . . . , xd|z) ≥ C(y1, . . . , yd|z) on (ii).

Proof. If b is a function of a, then H(a) = H(a, b); therefore,

H(a) − H(b) = H(a,b) − H(b) = H(a|b).

To prove (i), write

C(x1, . . . , xd) − C(y1, . . . , yd) =
(

d∑
i=1

H(xi) − H(x1, . . . , xd)

)
−

(
d∑

i=1

H(yi) − H(y1, . . . , yd)

)

=
d∑

i=1

(H(xi) − H(yi)) − (H(x1, . . . , xd) − H(y1, . . . , yd))

=
d∑

H(xi |yi) − H(x1, . . . , xd|y1, . . . , yd)
i=1
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≥
d∑

i=1

H(xi |y1, . . . , yd) − H(x1, . . . , xd|y1, . . . , yd)

= C(x1, . . . , xd|y1, . . . , yd).

The proof of (ii) is similar. �
We first prove the second inequality of Theorem 5.2, similarly to Theorem 2.1. A more general form of Pinsker’s inequality 

states that for discrete probability distributions p and q, ‖p − q‖1 ≤ √
2D K L (p‖q). The payoff function gn is 1-Lipschitz w.r.t. 

the ‖·‖1 norm; therefore, by (5.1),

for any h ≥ 0, cor minmaxn G(h) ≥ minmaxn G − √
2h ,

and since the function on the right-hand side is convex, it is smaller than (Vex cor minmaxn G)(h) as well.
To prove the first inequality of Theorem 5.2, we need to review the proof of Theorem 2.1, written for three-player games, 

and adapt it to general n-player games. Let us start by reviewing Lemma 4.2, which turns out to require most of the work.
The general form of the lemma would state that against any tuple of random strategies s1, . . . , sn−1, Player n has a 

pure response sn that yields her an expected average of at least (Vex cor minmaxn G)
(

C(s1,...,sn−1)
m

)
. Reviewing the proof of 

Lemma 4.2, the adaptation to n players is straightforward up to the point where the proof says that it remains to show that

m∑
t=1

I(a1
t ;a2

t |āt−1) ≤ I(s1; s2) .

Hence, the general proof should show that 
∑m

t=1 C(a1
t , . . . , an−1

t |āt−1) ≤ C(s1, . . . , sn−1). We write it as a separate lemma:

Lemma 5.4. Let s1, . . . , sd be random strategies of the players of a d-player repeated game. The play a1, a2, . . . induced by (s1, . . . , sd)

satisfies that for any m,

m∑
t=1

C(a1
t , . . . ,ad

t |āt−1) ≤ C(s1, . . . , sd) .

Proof. For any t ≥ 1 and 1 ≤ i ≤ d, ai
t is a function of āt−1 and si . By Lemma 5.3 (ii),

C(s1, . . . , sd|āt−1) − C(a1
t , . . . ,ad

t |āt−1) ≥ C(s1, . . . , sd|āt) , (5.2)

because (a1
t , . . . , ad

t , ̄at−1) = āt .
Rearrange (5.2) as

C(a1
t , . . . ,ad

t |āt−1) ≤ C(s1, . . . , sd|āt−1) − C(s1, . . . , sd|āt) ,

and sum both sides from t = 1 to m, to get

m∑
t=1

C(a1
t , . . . ,ad

t |āt−1) ≤ C(s1, . . . , sd|ā0) − C(s1, . . . , sd|ām) ,

and the RHS is simply C(s1, . . . , sd) − C(s1, . . . , sd|ām) ≤ C(s1, . . . , sd). �
Adapting the construction of the auxiliary game to n players is, again, straightforward, with Bob representing Player n

and Alice representing Players 1, . . . , n − 1. We should show that the value of this game is at least

(Vex cor minmaxn G)

(
(n − 1) ln |A| · kn−1

kn

)
,

generalizing Lemma 4.1.
Where the proof of Lemma 4.1 shows that I(s1

|h; s2
|h) ≤ 2k ln |A|, the adapted proof should show that C(s1

|h, . . . , sn−1
|h ) ≤

(n − 1)k ln |A|, where h and si are as in the auxiliary game. si is a function of the pair (h, si), therefore,
|h
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C(s1
|h, . . . , sn−1

|h ) ≤ C
(
(h, s1), . . . , (h, sn−1)

)
=

n−1∑
i=1

H(h, si) − H
(
(h, s1), . . . , (h, sn−1)

)

=
n−1∑
i=1

H(h, si) − H(h, s1, . . . , sn−1)

≤
n−1∑
i=1

[
H(h) + H(si)

]
− H(s1, . . . , sn−1)

= (n − 1)H(h) +
n−1∑
i=1

H(si) − H(s1, . . . , sn−1)

= (n − 1)H(h) ≤ (n − 1)k ln |A| ,

where the last inequality holds since the size of the support of h is at most |A|k , and the preceding equality holds since 
s1, . . . , sn−1 are independent.

The adaptation of the rest of the proof of Theorem 2.1, once we are done with the auxiliary game, is straightforward. 
Against the strategies σ 1, . . . , σ n−1, Player n derives the maximizing strategy from the auxiliary game as we describe there, 
and the number of players she faces is immaterial.

5.3. An open question

Theorem 2.1 sets an asymptotic lower bound on the minmax value in the presence of bounded recall. A comparison with 
Peretz (2013) shows that our lower bound is of the correct order of magnitude, but it does not suggest that the bound is 
tight. Providing tight bounds for the minmax value (of three-person games) with bounded recall remains an open problem.

To pin down the problem, let us focus on the three-person Matching Pennies game G = 〈A, g〉 in which Player 3’s payoff 
function is given in (1.1). Does minmax3 G∞[k, k, k] converge as k → ∞, and, if so, what is the limit? We are not aware of 
any (asymptotic) bounds beyond

−1

2
≤ lim inf

k→∞
minmax3 G∞[k,k,k] ≤ lim sup

k→∞
minmax3 G∞[k,k,k] ≤ −1

4
.
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